
WoRK in pRogRess – to be submitted to TOPLAS 2024

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

A Denotational Approach to Release/Acquire Concurrency

YOTAM DVIR, Tel Aviv University, Israel
OHAD KAMMAR, University of Edinburgh, Scotland
ORI LAHAV, Tel Aviv University, Israel

We present a compositional denotational semantics for a functional language with first-class parallel composi-
tion and shared-memory operations whose operational semantics follows the Release/Acquire weak memory
model (RA). The semantics is formulated in Moggi’s monadic approach, and is based on Brookes-style traces.
To do so we adapt Brookes’s traces to Kang et al.’s view-based machine for RA, and supplement Brookes’s
mumble and stutter closure operations with additional operations, specific to RA. The latter provides a more
nuanced understanding of traces that uncouples them from operational interrupted executions. We show
that our denotational semantics is adequate and use it to validate various program transformations of in-
terest. This is the first work to put weak memory models on the same footing as many other programming
effects in Moggi’s standard monadic approach.

Additional Key Words and Phrases: Weak memory models, Release/Acquire, Shared state, Shared memory,
Concurrency, Denotational semantics, Monads, Program refinement, Program equivalence, Compiler opti-
mizations

ACM Reference Format:
Yotam Dvir, Ohad Kammar, and Ori Lahav. 2024. A Denotational Approach to Release/Acquire Concurrency.
1, 1 (April 2024), 80 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Denotational semantics defines the meaning of programs compositionally, where the meaning of a
program term is a function of the meanings assigned to its immediate syntactic constituents. This
key feature makes denotational semantics instrumental in understanding the meaning a piece of
code independently of the context under which the code will run.This style of semantics contrasts
with standard operational semantics, which only executes closed/whole programs. A basic require-
ment of such a denotation function J−K is for it to be adequate w.r.t. a given operational semantics:
plugging program terms 𝑀 and 𝑁 with equal denotations—i.e. J𝑀K = J𝑁 K—into some program
context Ξ [−] that closes over their variables, results in observationally indistinguishable closed
programs in the given operational semantics. Moreover, assuming that denotations have a defined
order (≤), a “directed” version of adequacy ensures that J𝑀K ≤ J𝑁 K implies that all behaviors
exhibited by Ξ [𝑀] under the operational semantics are also exhibited by Ξ [𝑁].

For shared-memory concurrent programming, Brookes’s seminal work [13] defined a denota-
tional semantics, where the denotation J𝑀K is a set of totally ordered traces of 𝑀 closed under
certain operations, called stutter and mumble. Traces consist of sequences of memory snapshots
that𝑀 guarantees to provide while relying on its environment to make other memory snapshots.

Authors’ addresses: Yotam Dvir, yotamdvir@mail.tau.ac.il, Tel Aviv University, Tel Aviv, Israel; Ohad Kammar, ohad.
kammar@ed.ac.uk, University of Edinburgh, Edinburgh, Scotland; Ori Lahav, orilahav@tau.ac.il, Tel Aviv University, Tel
Aviv, Israel.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM XXXX-XXXX/2024/4-ART
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: April 2024.

HTTPS://ORCID.ORG/0000-0002-6507-3791
HTTPS://ORCID.ORG/0000-0002-2071-0929
HTTPS://ORCID.ORG/0000-0003-4305-6998
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://orcid.org/0000-0002-6507-3791
https://orcid.org/0000-0002-2071-0929
https://orcid.org/0000-0003-4305-6998
https://doi.org/10.1145/nnnnnnn.nnnnnnn

WoRK in pRogRess – to be submitted to TOPLAS 2024

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

2 Yotam Dvir, Ohad Kammar, and Ori Lahav

Brookes [12] used the insights behind this semantics to develop a semantic model for separation
logic, and Turon and Wand [48] used them to design a separation logic for refinement. Addition-
ally, Xu et al. [50] used traces as a foundation for the Rely/Guarantee approach for verification of
concurrent programs, and Liang et al., Liang et al. [36, 37] used a trace-based program logic for
refinement.

Amemory model decides what outcomes are possible from the execution of a program. Brookes
established the adequacy of the trace-based denotational semantics w.r.t. the operational semantics
of the strongest model, known as sequential consistency (SC), where every memory access happens
instantaneously and immediately affects all concurrent threads. However, SC is too strong tomodel
real-world shared memory, whether it be of modern hardware, such as x86-TSO [42, 46] and ARM,
or of programming languages such as C/C++ and Java [4, 39]. These runtimes followweak memory
models that allow performant implementations, but admit more behaviors than SC.

Do weak memory models admit adequate Brookes-style denotational semantics? This question
has been answered affirmatively once, by Jagadeesan et al. [25], who closely followed Brookes
to define denotational semantics for x86-TSO. Other weak memory models, in particular, models
of programming languages, and non-multi-copy-atomic models, where writes can be observed by
different threads in different orders, have so far been out of reach of Brookes’s totally ordered
traces, and were only captured by much more sophisticated models based on partial orders [15, 19,
24, 26, 29, 43].

In this paper we target the Release/Acquire memory model (RA, for short). This model, obtained
by restricting the C/C++11memorymodel to Release/Acquire atomics, is a well-studied fundamen-
tal memory model weaker than x86-TSO, which, roughly speaking, ensures “causal consistency”
together with “per-location-SC” and “RMW (read-modify-write) atomicity” [30, 31]. These assur-
ances make RA sufficiently strong for implementing common synchronization idioms. RA allows
more performant implementations than SC, since, in particular, it allows the reordering of a write
followed by a read from a different location, which is commonly performed by hardware, and it is
non-multi-copy-atomic, thus allowing less centralized architectures like POWER [47].

Our first contribution is a Brookes-style denotational semantics for RA. As Brookes’s traces
are totally ordered, this result may seem counterintuitive. The standard semantics for RA is a
declarative (a.k.a. axiomatic) memory model, in the form of acyclicity consistency constraints over
partially ordered candidate execution graphs. Since these graphs are not totally ordered, one might
expect that Brookes’s traces are insufficient. Nevertheless, our first key observation is that an
operational presentation of RA as an interleaving semantics of a weak memory system lends itself
to Brookes-style semantics. For that matter, we develop a notion of traces compatible with Kang
et al.’s “view-based” machine [28], an operational semantics that is equivalent to RA’s declarative
formulation. Our main technical result is the (directed) adequacy of the proposed Brookes-style
semantics w.r.t. that operational semantics of RA.

A main challenge when developing a denotational semantics lies in making it sufficiently ab-
stract. While full abstraction is often out of reach, as a yardstick, we want our semantics to be
able to justify various compiler transformations/optimizations that are known to be sound under
RA [49]. Indeed, an immediate practical application of a denotational semantics is the ability to
provide local formal justifications of program transformations, such as those performed by opti-
mizing compilers. In this setting, to show that an optimization𝑁 � 𝑀 is valid amounts to showing
that replacing 𝑁 by 𝑀 anywhere in a larger program does not introduce new behaviors, which
follows from J𝑀K ≤ J𝑁 K given a directionally adequate denotation function J−K.

To support various compiler transformations, we close our denotations under certain opera-
tions, including analogs to Brookes’s stutter and mumble, but also several RA-specific operations,
that allow us to relate programs which would naively correspond to rather different sets of traces.

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

A Denotational Approach to Release/Acquire Concurrency 3

Given these closure operations, our semantics validates standard program transformations, includ-
ing structural transformations, algebraic laws of parallel programming, and all known thread-local
RA-valid compiler optimizations. Thus, the denotational semantics is instrumental in formally es-
tablishing validity of transformations under RA, which is a non-trivial task [19, 49].

Our second contribution is to connect the core semantics of parallel programming languages
exhibiting weak behaviors to the more standard semantic account for programming languages
with effects. Brookes presented his semantics for a simple imperativeWHILE language, but Benton
et al., Dvir et al. [6, 20] later recast it atop Moggi’s monad-based approach [40] which uses a
functional, higher-order core language. In this approach the core language is modularly extended
with effect constructs to denote program effects. In particular, we define parallel composition as a
first-class operator.This is in contrast to most of the research of weak memory models that employ
imperative languages and assume a single top-level parallel composition.

A denotational semantics given in this monadic style comes ready-made with a rich semantic
toolkit for program denotation [7], transformations [5, 8–10, 23], reasoning [2, 38], etc. We chal-
lenge and reuse this diverse toolkit throughout the development. We follow a standard approach
and develop specialized logical relations to establish the compositionality property of our proposed
semantics; its soundness, which allows one to use the denotational semantics to show that certain
outcomes are impossible under RA; and adequacy. This development puts weak memory models,
which often require bespoke and highly specialized presentations, on a similar footing to many
other programming effects.

Outline. In §2 we overview the Release/Acquire operational semantics and the trace-based de-
notational semantics that we use and extend in this paper. In §3 we summarize our contributions.

The rest of the paper goes into further detail. In §4 we present the programming language syntax
and typing system, which in §5 we equip with an extended presentation of the RA operational
semantics, along with observations that will support our definition of traces. In §6 we define our
trace-based denotational semantics for RA, and in §7 we work up to and establish our main results.
Finally, we conclude and discuss related work in §8.

Comparing to the conference version. The conference version of this paper [21] is covered here
by §§1-3 and 8, roughly speaking. The rest of this paper extends the conference version. Here, def-
initions and theorems are formally specified and fully proven. This account also provides a more
detailed discussion and more examples. By expanding in breadth and depth, we state (and prove)
some results in a stronger form here, such as the denotational semantics supporting transforma-
tions involving arbitrary RMWs; and a tighter characterization of the commutativity of rewrite
rules, which is one of the main technical challenges in the development of the metatheory.

2 PRELIMINARIES
We overview previous work and our slight variations on it to facilitate the abridged discussion of
our contribution (§3). Particularly, we partially present the language and its operational semantics
under the Sequential Consistency (SC) memory model (§2.1), Brookes’s denotational semantics for
SC (§2.2), and Kang et al.’s operational presentation of the RA memory model (§2.3). See §4 for the
full language, and §5 for a detailed account of the RA operational semantics.

2.1 Language and Operational Semantics
The programming language we use is an extension of a functional language with shared-state
constructs. Program terms𝑀 and 𝑁 can be composed sequentially explicitly as𝑀 ;𝑁 or implicitly
by left-to-right evaluation in the pairing construct 〈𝑀, 𝑁 〉. They can be composed in parallel as
𝑀 ∥ 𝑁 . We assume preemptive scheduling, thus imposing no restrictions on the interleaving

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

4 Yotam Dvir, Ohad Kammar, and Ori Lahav

execution steps between parallel threads. To introduce the memory-access constructs, we present
the well-known message passing litmus test, adapted to the functional setting:

(x := 1 ; y := 1) ∥ 〈y?, x?〉 (MP)
Here, x and y refer to distinct shared memory locations. Assignment ℓ := 𝑣 stores the value 𝑣 at
location ℓ in memory, and dereference ℓ? loads a value from ℓ . The language also includes atomic
read-modify-write (RMW) constructs. For example, assuming integer storable values, FAA (ℓ, 𝑣)
(Fetch-And-Add) atomically adds 𝑣 to the value stored in ℓ . In contrast, interleaving is permitted
between the dereferencing, adding, and storing in ℓ := (ℓ? + 𝑣). The underlying memory model
dictates the behavior of the memory-access constructs more specifically.

In the functional setting, execution results in a returned value: ℓ := 𝑣 returns the unit value 〈〉,
i.e. the empty tuple; ℓ?, and the RMW constructs such as FAA (ℓ, 𝑣), return the loaded value;𝑀 ;𝑁
returns what 𝑁 returns; and 〈𝑀, 𝑁 〉, as well as 𝑀 ∥ 𝑁 , return the pair consisting of the return
value of 𝑀 and the return value of 𝑁 . We assume left-to-right execution of pairs, so in the (MP)
example 〈y?, x?〉 steps to 〈𝑣, x?〉 for a value 𝑣 that can be loaded from y, and 〈𝑣, x?〉 steps to 〈𝑣,𝑤〉
for a value 𝑤 that can be loaded from x. In between, the left side of the parallel composition (∥)
can take steps.

We can use intermediate results in subsequent computations via let binding: let𝑎 = 𝑀 in𝑁 binds
the result of𝑀 to 𝑎 in 𝑁 . Thus, we execute𝑀 first, and substitute the resulting value𝑉 for 𝑎 in 𝑁
before executing 𝑁 [𝑎 ↦→ 𝑉]. Similarly, we deconstruct pairs by matching: match𝑀 with 〈𝑎,𝑏〉. 𝑁
binds the components of the pair that𝑀 returns to 𝑎 and 𝑏 respectively in 𝑁 . The first and second
projections fst and snd, as well as the operation swap that swaps the pair constituents, are defined
using match standardly.

Traditionally, weak memory models are contrasted by finding litmus test programs, such as
(MP), with which one model supports a specific observable behavior that the other does not. Since
different models feature quite different notions of internal state, and observing the memory di-
rectly is not considered feasible anyway, internal interactions are ignored. We do not consider
infinite executions in this paper, so we conflate observable behaviors with outcomes: values that
the program may evaluate to from given initial memory values. Litmus tests are traditionally de-
signed with all initial memory values set to 0 in mind.

Remark (Imperative vs. Functional). Presentations of litmus tests for weak-memory models are
usually presented imperatively using local registers a, b. This is subsumed in the functional setting by
systematically replacing registers with let-bindings.

For example, we can apply this process to the imperative message passing litmus test:
Style Imperative Functional

Program x := 1
y := 1

a := y
b := x

x := 1 ;
y := 1

let a = y? in
let b = x? in 〈a, b〉

Outcome An execution that ends with An evaluations that returns
of interest a = 1 ∧ b = 0 〈〈〉 , 〈1, 0〉〉

Up to standard, memory-model agnostic equivalences, this is our functional presentation (MP).

In the strongest memory model of Sequential Consistency (SC), every value stored is imme-
diately made available to every thread, and every dereference must load the latest stored value.
Thus the underlying memory model uses maps from locations to values for the memory state that
evolves during program execution. Given an initial state, the behavior of a program in SC depends
only on the choice of interleaving of steps. In (MP) the order of the two stores and the two loads
ensures that 〈〈〉 , 〈0, 0〉〉, 〈〈〉 , 〈0, 1〉〉, and 〈〈〉 , 〈1, 1〉〉 are observable, but 〈〈〉 , 〈1, 0〉〉 is not.

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

A Denotational Approach to Release/Acquire Concurrency 5

Observable behavior as defined for whole programs is too crude to study program terms that
can interact with the program context within which they run. Indeed, compare 𝑀1 defined as
x :=1 ;y := 1 ;y? versus𝑀2 defined as x :=1 ;y := x? ;y?. Under SC, the difference between them as
whole programs is unobservable: starting from any initial state both return 1. Now consider them
within the program context − ∥ x := 2. That is, compare𝑀1 ∥ x := 2 versus𝑀2 ∥ x := 2. In the first,
𝑀1 still always returns 1; but in the second,𝑀2 can also return 2 by interleaving the store of 2 in x
immediately after the store of 1 in x. Thus, if J𝑀K, i.e. 𝑀’s denotation, were to simply map initial
states to possible results according to executions of 𝑀 , we could not define J𝑀 ∥ 𝑁 K in terms ofJ𝑀K and J𝑁 K alone, because we would have J𝑀1K = J𝑀2K but also J𝑀1 ∥ x := 2K ≠ J𝑀2 ∥ x := 2K.
We conclude that J𝑀K must contain more information on 𝑀 than an “input-output” relation; it
must account for interference by the environment.

2.2 Brookes’s Trace-based Semantics for Sequential Consistency
Aprominent approach to define compositional semantics for concurrent programs is due to Brookes [13],
who defined a denotational semantics for SC by taking J𝑀K to be a set of traces of 𝑀 closed un-
der certain rewrite rules as we detail below. Brookes established a (directional) adequacy theorem:
if J𝑀K ⊇ J𝑁 K then the transformation 𝑀 � 𝑁 is valid under SC. The latter means that, when
assuming SC-based operational semantics, 𝑀 can be replaced by 𝑁 within a program without in-
troducing new observable behaviors for it. Thus, adequacy formally grounds the intuition that the
denotational semantics soundly captures behavior of program terms.

As a particular practical benefit, formal and informal simulation arguments which are used
to justify transformations in operational semantics can be replaced by cleaner and simpler proofs
based on the denotational semantics. For example, a simple argument shows that Jx := 𝑣 ; x :=𝑤K ⊇Jx :=𝑤K holds in Brookes’s semantics. Thanks to adequacy, this justifies Write-Write Elimination
(WW-Elim) x := 𝑣 ; x :=𝑤 � x :=𝑤 in SC.

Traces in SC. In Brookes’s semantics, a program term is denoted by the set of traces, each trace
consisting of a sequence of transitions. Each transition is of the form 〈𝜇, 𝜌〉, where 𝜇 and 𝜌 are
memories, i.e. maps from locations to values. A transition describes a program term’s execution
relying on a memory state snapshot 𝜇 in order to guarantee the memory state snapshot 𝜌 .

For example, Jx :=𝑤K includes all traces of the form 〈𝜌, 𝜌 [x := 𝑤]〉 , where 𝜌 [x := 𝑤] is equal
to 𝜌 except for mapping x to 𝑤 . The definition is compositional: the traces in Jx := 𝑣 ; x :=𝑤K are
obtained from sequential compositions of traces from Jx := 𝑣K with traces from Jx :=𝑤K, obtaining
all traces of the form 〈𝜇, 𝜇 [x := 𝑣]〉 〈𝜌, 𝜌 [x := 𝑤]〉 . Such a trace relies on 𝜇 in order to guarantee
𝜇 [x := 𝑣], and then relies on 𝜌 in order to guarantee 𝜌 [x := 𝑤]. Allowing 𝜌 ≠ 𝜇 [x := 𝑣] reflects
the possibility of environment interference between the two store instructions. Indeed, when de-
noting parallel composition J𝑀 ∥ 𝑁 K we include all traces obtained by interleaving transitions
from a trace from J𝑀K with transitions from a trace from J𝑁 K. By sequencing and interleaving,
one subterm’s guarantee can fulfill the requirement which another subterm relies on. They may
also relegate reliances and guarantees to their mutual context.

In the functional setting, executions not only modify the state but also return values. In this
setting, traces are pairs, which we write as 𝜉 ∴ 𝑟 , where 𝜉 is the sequence of transitions and 𝑟
represents the final value that the program term guarantees to return [6]. For example, the seman-
tics of dereference Jx?K includes all traces of the form 〈𝜇, 𝜇〉 ∴ 𝜇 (x). Indeed, the execution of x?
does not change the memory and returns the value loaded from x. In the semantics of assignmentJx := 𝑣K, instead of 〈𝜇, 𝜇 [x := 𝑣]〉 we have 〈𝜇, 𝜇 [x := 𝑣]〉 ∴ 〈〉.

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

6 Yotam Dvir, Ohad Kammar, and Ori Lahav

Rewrite rules in SC. Were denotations in Brookes’s semantics defined to only include the traces
explicitly mentioned above, it would not be abstract enough to justify (WW-Elim), which elimi-
nates redundant writes. Indeed, we only saw traces with two transitions in Jx := 𝑣 ; x :=𝑤K, but
in Jx :=𝑤K we saw traces with one. The semantics would still be adequate, but it would lack ab-
straction.This is where Brookes’s second main idea comes into play, making the denotations more
abstract by closing them under two operations that rewrite traces:

Stutter adds a transition of the form 〈𝜇, 𝜇〉 anywhere in the trace. Intuitively, a program term can
always guarantee what it relies on.

Mumble combines a couple of subsequent transitions of the form 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 into a single transi-
tion 〈𝜇, 𝜃〉 anywhere in the trace. Intuitively, a program term can always omit a guarantee
to the environment, and rely on its own omitted guarantee instead of relying on the envi-
ronment.

Denotations in Brookes’s semantics are defined to be sets of traces closed under rewrite rules:
applying a rewrite to a trace in the set results in a trace that is also in the set. For example, Jx :=𝑤K
is the least closed set with all traces of the form 〈𝜌, 𝜌 [x := 𝑤]〉 ∴ 〈〉, and Jx := 𝑣 ; x :=𝑤K is the
least closed set with all sequential compositions of traces from Jx := 𝑣K with traces from Jx :=𝑤K.

Closure under these rules makes traces in J𝑀K correspond precisely to interrupted executions
of 𝑀 , which are executions of 𝑀 in which the memory can arbitrarily change between steps of
execution. Each transition 〈𝜇, 𝜌〉 in a trace in J𝑀K corresponds to multiple execution steps of 𝑀
that transition 𝜇 into 𝜌 , and each gap between transitions accounts for possible environment in-
terruption. The rewrite rules maintain this correspondence: stutter corresponds to taking 0 steps,
and mumble corresponds to taking 𝑛 +𝑚 steps instead of taking 𝑛 steps and then𝑚 steps when
the environment did not change the memory in between. Brookes’s adequacy proof is based on
this precise correspondence. In particular, the single-pair traces in J𝑀K correspond to the (unin-
terrupted) executions, the “input-output” relation, of𝑀 .

2.3 Overview of Release/Acquire Operational Semantics
Memory accesses in RA are more subtle in than in SC. To address this we adopt Kang et al.’s “view-
based” machine [28], an operational presentation of RA proven to be equivalent to the original
declarative formulation of RA [e.g. 31]. In this model, rather than the memory holding only the
latest value written to every variable, the memory accumulates a set of memory update messages
for each location. Each thread maintains its own view that captures which messages the thread can
observe, and is used to constrain the messages that the thread may read and write.Themessages in
the memory carry views as well, which are inherited from the thread that wrote the message, and
passed to any thread that reads the message. Thus views indirectly maintain a causal relationship
between messages in memory throughout the evolution of the system.

More concretely, causality is enforced by timestamping messages, thus placing them on their
location’s timeline. A view 𝜅 associates a timestamp 𝜅ℓ to each location ℓ , obscuring the portion
of ℓ’s timeline before 𝜅ℓ . The view points to a message at ℓ with timestamp 𝜅ℓ . Messages point to
messages via the view they carry, and must point to themselves.

To capture the atomicity of RMWs, each message occupies a half-open segment (𝑞, 𝑡] on their
location’s timeline, where 𝑡 is the message’s timestamp. A message with segment (𝑞, 𝑡] dovetails
with a message at the same location with timestamp 𝑞, if there is one. When an RMW writes it
must “modify” the message from which it read by dovetailing with it.

We explain our notation for messages by example. Assuming of two location, x and y, we denote
by x:1@(.5, 1.7] ⟪y@3.5⟫ the message at location x that carries the value 1, occupies the segment

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343

A Denotational Approach to Release/Acquire Concurrency 7

y

x
-2
|

-1
|

0
|

1
|

-.5
|

.5
|

1.7
|

x:1@(92, 91] ⟪y@1⟫𝜈1 x:2@(9.5, .5] ⟪y@1⟫𝜈2 x:1@(.5, 1.7] ⟪y@3.5⟫𝜈3

y:1@(0, 1] ⟪x@91⟫𝜖1 y:7@(1, 2] ⟪x@91⟫𝜖2 y:3@(3, 3.5] ⟪x@91⟫𝜖3

0
|

1
|

2
|
3
|

3.5
|

〈
x: 1

𝜈1

y:
1

𝜖1
3

𝜖3

𝛼

, x: 1
𝜈1

2
𝜈2

1
𝜈3

y:
1

𝜖1
3

𝜖3

〉〈
x: 1

𝜈1
2

𝜈2
1

𝜈3

y:
1

𝜖1
7

𝜖2
3

𝜖3

, x: 1
𝜈1

2
𝜈2

1
𝜈3

y:
1

𝜖1
7

𝜖2
3

𝜖3

𝜔

〉
∴ 5

Fig. 1. Illustrations of a memory (top) and a trace (bottom), in the setting of two memory locations, x
and y. Top: A memory holding six messages. The timelines are purposefully misaligned and not to scale to
emphasize that timestamps for different locations are incomparable and that only the order between them
is relevant. The graph structure that the views impose is illustrated by arrows pointing between messages.
Messages that are not dovetailed are set apart, e.g. 𝜈3 dovetails with 𝜈2, which does not dovetail with 𝜈1.
Bottom:A trace with two transitions:𝛼 〈𝜇1, 𝜌1〉 〈𝜇2, 𝜌2〉 𝜔∴5. Thememory illustrated on top is 𝜌2. Messages
and edges that are not part of a previous memory are highlighted. The local messages are 𝜈2 and 𝜈3, and the
rest are environment messages.

(.5, 1.7] on x’s timeline, and carries the view 𝜅 such that 𝜅x = 1.7 and 𝜅y = 3.5 (every message
points to itself). An example memory is depicted at the top of Figure 1.

When a thread writes to a location ℓ , it must increase the timestamp its view associates with
ℓ and use its new view as the message’s view. The message’s segment must not overlap with any
other segment on ℓ’s timeline. In particular, only one message can ever dovetail with a given
message. A thread can only read from revealed messages, and when it reads, its view increases as
needed to dominate the view of the loaded message, where a view 𝜔 dominates a view 𝛼 , written
𝛼 ≤ 𝜔 , if 𝛼ℓ ≤ 𝜔ℓ for every ℓ . Increasing the view in this way may obscure messages at the location
of the read as well as other locations.

Revisiting the (MP) litmus test, starting with a memory with a single message holding 0 at each
location, and with all views pointing to the timestamps of these message, suppose the right thread
loaded 1 from y, as depicted on the left side of Figure 2. Such a message can only be available if
the left thread stored it. Before storing 1 to y, the left thread stored 1 to x, obscuring the initial x
message. The right thread inherits this limitation through the causal relationship, so it will not be
able to load 0 from x. Therefore, RA forbids the outcome 〈〈〉 , 〈1, 0〉〉.

In contrast, consider the litmus test known as store buffering:

(x := 1 ; y?) ∥ (y := 1 ; x?) (SB)

By considering the possible interleavings, one can check that no execution in SC returns 〈0, 0〉.
However, in RA some do. Indeed, even if the left thread stores to x before the right thread loads
from x, the right thread’s view allows it to load 0, as depicted on the right side of Figure 2.

We can recover the SC behavior by interspersing fences between sequenced memory accesses,
which we model with FAA (z, 0) to a fresh location z. Thus, compare (SB) to the store buffering
with fences litmus test:

(x := 1 ; FAA (z, 0) ; y?) ∥ (y := 1 ; FAA (z, 0) ; x?) (SB+F)

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392

8 Yotam Dvir, Ohad Kammar, and Ori Lahav

0
𝜖0

1
𝜖1

0
𝜈0

1
𝜈1

y:

x:
𝜎 load−−−→

𝜖1

0
𝜖0

1
𝜖1

0
𝜈0

1
𝜈1

y:

x:
𝜎 ′

0
𝜖0

1
𝜖1

0
𝜈0

1
𝜈1

y:

x:
𝜎 load−−−→

𝜈0

0
𝜖0

1
𝜖1

0
𝜈0

1
𝜈1

y:

x:
𝜎 ′

Fig. 2. Depictions of a step during an execution of a litmus test, with the view of the right thread changing
from 𝜎 to 𝜎′. The value each message carries is in its bottom-right corner. Views are illustrated implicitly in
the graph structure that they impose. Obscured messages are faded. Left: As the right thread in (MP) loads
1 from y, it inherits the view of 𝜖1, obscuring 𝜈0. Right: The right thread in (SB) loading 0 from x. Storing 𝜖1
did not obscure 𝜈0.

Both of the FAA (z, 0) instructions store messages that must dovetail with the message that they
load from, and in that also inherit its view. They cannot both dovetail with the same message
because their segments cannot intersect. Thus, one of them—say, the one on the right—will have
to dovetail with the other. In this scenario, the view of the message that the left thread stores at z
points to the message it previously stored at x. When the right thread loads the message from z it
inherits this view, obscuring the initial message to x. Therefore, when it later loads from x, it must
load what the left thread stored. Thus, like in SC, no execution in RA returns 〈0, 0〉.

3 CONTRIBUTION SUMMARY
We begin by showcasing our notion of a trace, which we adapt to RA both in the structure of the
trace itself, as well as in the rewrite rules we impose (§3.1). We then briefly explain the way in
which our semantics is standard, and a few beneficial consequences of this fact (§3.2). Finally, we
connect our denotational semantics to the operational semantics of RA in (§3.3), showing both
adequacy and sufficient abstraction.

3.1 Traces for Release/Acquire
As in Brookes’s SC-traces, our RA-traces include a sequence of transitions 𝜉 , each transition a pair
of RA memories; and a return value 𝑟 . Intuitively, these play a similar role here, formally grounded
in analogs to the stutter andmumble rewrite rules. Seeing that the operational semantics only adds
messages and never modifies them, we require that every memory snapshot in the sequence 𝜉 be
contained in the subsequent one, whether it be within or across transitions. A message added
within a transition is a local message; otherwise it is an environment message. We call the first
memory in 𝜉 ’s first transition its opening memory, and the second memory in 𝜉 ’s last transition
its closing memory. In addition, RA-traces include an initial view 𝛼 , declaring which messages are
relied upon to be revealed in 𝜉 ’s opening memory; and a final view 𝜔 , declaring which messages
are guaranteed to be revealed in 𝜉 ’s closing memory. We write the trace as 𝛼 𝜉 𝜔 ∴ 𝑟 . See bottom
of Figure 1 for an illustrated example.

RA specific rewrite-rules. We add several more bespoke RA-specific rewrite rules to close deno-
tations under, making the denotational semantics more abstract. For example, (WW-Elim) is also
valid under RA. The reasoning we have used to justify it under SC, by showing Jx := 𝑣 ; x :=𝑤K ⊇Jx :=𝑤K in Brookes’s semantics, will only get us so far here. Replicating the process, the trace
we end up with in Jx := 𝑣 ; x :=𝑤K after rewriting with mumble has two local messages, whereas
traces from Jx :=𝑤K only have a single local message. Roughly speaking, the equality concerning
SC memories 𝜇 [x := 𝑣] [x := 𝑤] = 𝜇 [x := 𝑤] does not transfer to RA where memory, by accu-
mulating messages, is more concrete. We resolve this by adding the absorb rewrite rule, which

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441

A Denotational Approach to Release/Acquire Concurrency 9

replaces two dovetailed local messages with one that carries the second message’s value. Thus, in
the proof for RA we follow the mumble rewrite with an absorb rewrite.

Internalized operational invariants. We further increase abstraction in our denotations by point-
ing out and internalizing properties of the operational semantics. Without restrictions, traces
may represent behaviors that include operationally unreachable states. Forbidding such redundant
traces eliminates a source of differentiation between denotations, thus increasing their abstraction.

Specifically, consider the transformation x? ; y? � y?, a consequence of the RA-valid Irrelevant
Read Elimination (R-Elim) x? ; 〈〉 � 〈〉 and structural equivalences. Consider the state 𝑆 that
consists of the memory at the top of Figure 1 and the view that points to 𝜈3 and 𝜖2. The only step
x? ; y? can take from the state 𝑆 is to load 𝜈3, inheriting the view that 𝜈3 carries, which changes
the thread’s view to point to 𝜖3. Only 𝜖3 is available in the following step, which means the term
returns 3. In contrast, starting from 𝑆 , the term y? can load from 𝜖2 to return 7. This analysis does
not invalidate the transformation because the state 𝑆 is unreachable by an execution starting from
an initial state, and should therefore be ignored when determining observable behaviors.

Just as we ignore unreachable states in the operational semantics, we discard “unreachable”
traces to refine our denotational semantics. This move allows us to justify (R-Elim): we haveJx? ; 〈〉K ⊇ J〈〉K.
3.2 Compoisitionality and the Monadic Presentation
One of the contributions of this work is to bridge research of weak-memory models with Moggi’s
monad-based approach [40] to denotational semantics. This approach also comes with practical
benefits, such as a built-in semantic framework for the effect-free fragment of the language, to
which effect constructs can be modularly added. Reasoning about the effect-free fragment stays
valid through modular expansions with effects. For instance, if 𝐾 is effect-free, then:Jif 𝐾 then𝑀 ; 𝑁 else𝑀 ; 𝑁 ′ K = J𝑀 ; if 𝐾 then𝑁 else𝑁 ′ K
So-called structural equivalences may otherwise require challenging ad-hoc proofs [e.g. 24, 26].

Higher order. An important aspect of a programming language is its facilitation of abstraction.
Higher-order programming is a flexible instance of this, in which programmable functions can
take functions as input and return functions as output. Moggi’s approach supports this feature
out-of-the-box in such a way that does not complicate the rest of the semantics, as the first-order
fragment of the semantics need not change to include it.

Every value returned by an execution has a semantic presentation which we use as the return
value in traces. The semantic and syntactic values are identified in the first-order fragment, but
different syntactic functions may have the same semantics, so the identification does not extend
to higher-order.

A term is a program if it is closed (every variable occurrence is bound) and of ground type (all
functions are applied to arguments). This definition is in line with the expectation that a program
should return a concrete result that the end-user can consume. Thus, we only consider observable
behaviors of programs. Transformations only need to be valid when applied within programs.
Programs degenerate to closed terms in the first-order fragment.

To deal with the need to prove properties “pointwise” that abstractions bring about we use
logical relations. Moggi’s toolkit provides a standard way to define these, thereby lifting properties
to their higher-order counterparts.

Compositionality. In its most basic form, this key feature of denotational semantics means that
a program term’s denotation is defined using the denotations of its immediate subterms. In our

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490

10 Yotam Dvir, Ohad Kammar, and Ori Lahav

case denotations are sets, where each elements represents a possible behavior of the term, we are
interested in establishing a directional generalization of compositionality:
Compositionality (Thm. 7.7). For a program contextΞ [−], if J𝑀K ⊆ J𝑁 K then JΞ [𝑀]K ⊆ JΞ [𝑁]K.

This is a consequence of the monadic design of the denotational semantics using monotonic
operators, and is not substantially different from previous work [e.g. 20].

3.3 Relating the Denotational Semantics to the Operational Semantics
Kang et al. presentation assumes top-level parallelism, a common practice in studies of weak-mem-
ory models. This comes at the cost of the uniformity and compositionality. In particular, the deno-
tation J𝑀 ∥ 𝑁 K cannot be defined.We resolve this by extending Kang et al.’s operational semantics
to support first-class parallelism by organizing thread views in an evolving view-tree, a binary tree
with view-labeled leaves, rather than in a fixed flat mapping. Thus, states that accompany execut-
ing terms consist of a memory and a view-tree. In discourse, we do not distinguish between a view-
leaf and its label.
Remark. Handling parallel composition as a first-class construct allows us to decompose Write-
Read Reordering (WR-Reord) (x := 𝑣) ; y? � fst 〈y?, (x := 𝑣)〉 , a crucial reordering of memory
accesses valid under RA but not under SC, into a combination of Write-Read Deorder (WR-Deord)
〈(x := 𝑣) , y?〉 � (x := 𝑣) ∥ y? together with structural transformations and laws of parallel pro-
gramming:

(x := 𝑣) ; y?
↓Structural
� snd 〈(x := 𝑣) , y?〉

↓(WR-Deord)

� snd ((x := 𝑣) ∥ y?)
↓Par. Prog. Law: Symmetry

� snd (swap (y? ∥ (x := 𝑣)))
↓Structural
� fst (y? ∥ (x := 𝑣))

↓Par. Prog. Law: Sequencing
� fst 〈y?, (x := 𝑣)〉

This provides a separation of concerns: the components of this decomposition are supported by our
semantics using independent arguments. It also sheds a light on the interesting part, as they are all
valid under SC except for (WR-Deord).

Observability correspondence. We call some of our rewrite rules abstract, such as absorb, and
others concrete, such as stutter and mumble. We denote the basic denotation of a term 𝑀 by J𝑀K,
which is the denotation were it defined using only the concrete rewrite rules. Traces in the basic
denotations directly correspond to interrupted executions, but not so in the (regular) denotations.
For example, in our analysis of (WW-Elim), by using absorb, we ended up with a trace in which
only one message is added even though the program term adds two messages. Thus, the abstract
rewrite rules break the direct correspondence.

Still, some indirect correspondence should remain to justify adequacy. In particular, we would
like traces to correspond to observable behavior of programs. In one direction, an even stronger
property holds, known as soundness:
Soundness (Thm. 7.8). For every execution of a program𝑀 in the operational semantics of RA, there
exists 𝛼 〈𝜇, 𝜌〉 𝜔 ∴ 𝑟 ∈ J𝑀K that matches the execution: 〈𝛼, 𝜇〉 is the initial state, 〈𝜔, 𝜌〉 is the final
state, and 𝑟 matches the value returned.

To prove soundness, we take a trace where transitions correspond to the memory-accessing
execution steps, and then use mumble to obtain a single transition.

Ignoring the final state, the correspondence holds in the other direction too:
Evaluation Lemma (Lem. 7.10). For every program 𝑀 and 𝛼 〈𝜇, 𝜌〉 𝜔 ∴ 𝑟 ∈ J𝑀K there is an ob-
servable behavior of𝑀 with initial state 〈𝛼, 𝜇〉 and return value matching 𝑟 .

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

A Denotational Approach to Release/Acquire Concurrency 11

The lack of correspondence with the final state is an artifact of the concreteness-abstraction
divergence between the operational and denotational semantics. Due to this divergence, it is sig-
nificantlymore challenging to establish this direction of the correspondence than in previous work.
The challenge lies primarily in proving that abstract rewrite rules can be applied retroactively, de-
ferring them to the top-level. That is, denoting closure under the abstract rewrite rules by −†, we
claim:

Retroactive Closure (Lem. 7.4). If𝑀 is a program, then J𝑀K† = J𝑀K.
Thus, to obtain all of the traces in the (regular) denotation of a term, it is enough to close only

under the concrete rewrite rules as the denotation of a program is built-up from its subterms,
applying the abstract rewrite rules only at the top level.

The intuition that guides the proof is that the abstract rewrite rules can be percolated outwards:

Rewrite Commutativity (Lem. 7.1). Let 𝜏 and 𝜚 be traces such that 𝜏 can be rewritten to 𝜚 using
both concrete and abstract rewrite rules (denoted 𝜏 𝔠𝔞−→ 𝜚). Then there exists a trace 𝜋 , such that 𝜏 can
be rewritten to 𝜋 using only concrete rewrite rules (denoted 𝜏 𝔠−→ 𝜋), and 𝜋 can be rewritten to 𝜚 using
only abstract rewrite rules (denoted 𝜋 𝔞−→ 𝜚).

The central result is (directional) adequacy, stating that denotational approximation corresponds
to refinement of observable behaviors:

Adequacy (Thm. 7.9). If J𝑀K ⊆ J𝑁 K, then for all program contexts Ξ [−], every observable behavior
of Ξ [𝑀] is an observable behavior of Ξ [𝑁].

In particular, J𝑀K ⊆ J𝑁 K implies that 𝑁 � 𝑀 is valid under RA, because the effect of applying
it is unobservable. Adequacy follows immediately from the above results. Indeed, using soundness,
an observable behavior ofΞ [𝑀] corresponds to a single-transition 𝜏 ∈ JΞ [𝑀]K; by the assumption
and compositionality 𝜏 ∈ JΞ [𝑁]K; and using the evaluation lemma, 𝜏 corresponds to an observable
behavior of Ξ [𝑁].

Abstraction. Brookes’s semantics is fully abstract, meaning that the converse to adequacy also
holds: if 𝑁 � 𝑀 is valid under SC, then J𝑁 K ⊇ J𝑀K. However, Brookes’s proof relies on an
artificial program construct, await, that permits waiting for a specified memory snapshot and
then step (atomically) to a second specified memory snapshot. Thus, in realistic languages, when
this construct is unavailable, Brookes’s full abstraction proof does not apply.

Nevertheless, even without full abstraction, one can still provide evidence that an adequate
semantics is abstract by ensuring that it supports known transformations.

To the best of our knowledge, all transformations 𝑁 � 𝑀 proven to be valid under RA in
the existing literature are supported by our denotational semantics, i.e. J𝑁 K ⊇ J𝑀K. Structural
transformations are supported by virtue of using Moggi’s standard semantics. Our semantics also
validates “algebraic laws of parallel programming”, such as sequencing 𝑀 ∥ 𝑁 � 〈𝑀, 𝑁 〉 and its
generalization that Hoare and van Staden [22] recognized, (𝑀1 ;𝑀2) ∥ (𝑁1 ; 𝑁2) � (𝑀1 ∥ 𝑁1) ;
(𝑀2 ∥ 𝑁2), which in the functional setting can take the more expressive form in which the values
returned are passed on to the following computation. See Figure 3 for a partial list.

4 LANGUAGE AND TYPING
We consider a standard extension of Moggi’s [40] computational lambda calculus with products
and variants (labeled sums) further extending it with shared-memory constructs. We parameterize
our language, which we call 𝝀RA, by its globally available locations, the values we store in and

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588

12 Yotam Dvir, Ohad Kammar, and Ori Lahav

Laws of Parallel Programming
Symmetry �𝑀 ∥ 𝑁 swap (𝑁 ∥ 𝑀)
Generalized Sequencing

�(let𝑎 = 𝑀1 in𝑀2) ∥ (let𝑏 = 𝑁1 in𝑁2) match𝑀1 ∥ 𝑁1 with 〈𝑎, 𝑏〉. 𝑀2 ∥ 𝑁2

Eliminations
Irrelevant Read �ℓ? ; 〈〉 〈〉
Write-Write �ℓ := 𝑣 ; ℓ :=𝑤 ℓ :=𝑤

Ab

Write-Read �ℓ := 𝑣 ; ℓ? ℓ := 𝑣 ; 𝑣

Write-FAA �ℓ := 𝑣 ; FAA (ℓ,𝑤) ℓ := (𝑣 +𝑤) ; 𝑣Ab

Read-Write �let𝑎 = ℓ? in ℓ := (𝑎 + 𝑣) ; 𝑎 FAA (ℓ, 𝑣)
Read-Read �〈ℓ?, ℓ?〉 let𝑎 = ℓ? in 〈𝑎, 𝑎〉
Read-FAA �〈ℓ?, FAA (ℓ, 𝑣)〉 let𝑎 = FAA (ℓ, 𝑣) in 〈𝑎, 𝑎〉
FAA-Read �〈FAA (ℓ, 𝑣) , ℓ?〉 let𝑎 = FAA (ℓ, 𝑣) in 〈𝑎, 𝑎 + 𝑣〉
FAA-FAA �〈FAA (ℓ, 𝑣) , FAA (ℓ,𝑤)〉 let𝑎 = FAA (ℓ, 𝑣 +𝑤) in 〈𝑎, 𝑎 + 𝑣〉Ab

Others
Irrelevant Read Introduction �〈〉 ℓ? ; 〈〉
Read to FAA �ℓ? FAA (ℓ, 0)Di

Write-Read Deorder �〈(ℓ := 𝑣) , ℓ ′?〉 (ℓ := 𝑣) ∥ ℓ ′?Ti (ℓ ≠ ℓ ′)
Write-Read Reorder �(ℓ := 𝑣) ; ℓ ′? fst 〈ℓ ′?, (ℓ := 𝑣)〉Ti (ℓ ≠ ℓ ′)

Fig. 3. A selective list of supported non-structural transformations. Along with Symmetry, the denotational
semantics supports all symmetric-monoidal laws with the binary operator (∥) and the unit 〈〉. Similar trans-
formations, replacing FAA with other RMWs, are supported too. The abstract rewrite rules used to validate
a transformation is mentioned, if there is one.

retrieve from these locations, and the primitives we use to atomically mutate these values through
a unified read-modify-write construct.

Locations and Storable Values. We fix two finite sets of (shared memory) locations Loc, ranged
over by ℓ, ℓ ′; and (storable) values Val, ranged over by 𝑣,𝑤,𝑢. For example, we may take Loc and
Val to be all 64-bit sequences. In concrete examples, we will use concrete names such as x, y, z
for distinct locations, and numbers for values. For simplicity, we don’t include primitives (such as
addition) explicitly, since they require standard minor changes.

Read-modify-write (RMW). These constructs atomically read a value from memory and possibly
modify it to some other computed value. Typical languages include the following constructs, which
are efficiently compiled to hardware:Compare-and-Swap:modify when stored value match a pa-
rameter; Fetch-and-Add: increase by a parameter; and Exchange: always modify to a parameter.
For convenience, we include a single RMW construct that expresses all such operations, as well
as standard loads. This generalization, especially bringing together loads with RMW operations, is
non-standard, but makes our development more uniform.

Formally, a modifier is a partial function Φ : Val ⇀ Val, which represents an RMW operation
that reads a value 𝑣 from memory; and if Φ is defined on 𝑣 , atomically writes Φ(𝑣) instead. For
supporting parameters, an 𝑛-ary modifier is a partial function 𝜑− : Val𝑛 × Val ⇀ Val. Our lan-
guage requires a family RMW, indexed by the natural numbers, consisting of sets RMW𝑛 of 𝑛-ary

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

A Denotational Approach to Release/Acquire Concurrency 13

modifiers which we call primitive modifiers. For example, the primitive modifiers for common
operations, which have efficient implementations on hardware, are as follows, where ⊥ means
‘undefined’:
Load load(𝑣) B ⊥ Compare-and-Swap cas〈𝑤,𝑢 〉 (𝑣) B if 𝑣 = 𝑤 then𝑢 else⊥
Exchange xchg〈𝑤〉 (𝑣) B 𝑤 Fetch-and-Add faa〈𝑤〉 (𝑣) B 𝑣 +𝑤

We omitted load’s 0-parameters (〈〉); faa requires a semantic addition operator on values (+).

Syntax. Given parameters Loc, Val, and RMW, Figure 4(a) presents 𝝀RA’s syntax. The types are
standard, comprising tuple, sum and function types. We draw constructor names for variants from
a countably infinite set 𝜄 ∈ Lab. Assuming Lab contains Loc and Val, we identify them with sum
types Val and Loc whose constructors are the locations and values, each labeling the empty tuple
type.

The language’s terms are also standard other than the highlighted shared-memory constructs.
We draw program variables from a countably infinite set 𝑎, 𝑏, 𝑐 ∈ PVar. For simplicity, we assume
labels and variables are distinct: PVar∩Lab = ∅. Tuple and variant constructors are standard, and
we require the total sum type to disambiguate each variant constructor, which we omit when this
type can be inferred. The pattern matching constructs for tuples and variants are standard, with
binding variables occurrences in each pattern. In the tuple case, we require the variables in the pat-
tern to be distinct. Function abstraction and application are standard, and we annotate the bound
variable with its type, again omitting the annotation when we can infer it. The operational seman-
tics, defined in §5, follows a call-by-value evaluation strategy, and except for parallel composition
𝑀 ∥ 𝑁 , evaluation follows a left-to-right convention.

We index the RMW construct with a primitive modifier 𝜑 ∈ RMW, and its first argument is a
location from which to read and possibly modify, followed by a tuple supplying the parameters.

𝐴, 𝐵 ::= type
𝐴→ 𝐵 function
| (𝐴1 ∗ · · · ∗𝐴𝑛) tuple/product
| {𝜄1 of 𝐴1 variant/sum

| · · · | 𝜄𝑛 of 𝐴𝑛}
𝑀, 𝑁 ::= term

𝑎 variable/identifier
function

| 𝜆𝑎 : 𝐴.𝑀 abstraction
| 𝑀𝑁 application

constructor
| 〈𝑀1, ... , 𝑀𝑛〉 tuple
| 𝐴.𝜄 𝑀 variant

pattern matching
| match𝑀with on tuples
〈𝑎1, ... , 𝑎𝑛〉. 𝑁

| match𝑀with on variants
{𝜄1 𝑎1 .𝑁1 | · · · | 𝜄𝑛 𝑎𝑛 .𝑁𝑛}

shared-state concurrency
| rmw𝜑 (𝑀 ;𝑁) read-modify-write
| 𝑀 := 𝑁 write
| 𝑀 ∥ 𝑁 parallel composition

(𝑎 : 𝐴) ∈ 𝛤
𝛤 ` 𝑎 : 𝐴

𝛤, 𝑎 : 𝐴 ` 𝑀 : 𝐵

𝛤 ` 𝜆𝑎 : 𝐴.𝑀 : 𝐴→ 𝐵

𝛤 ` 𝑀 : 𝐴 𝛤 ` 𝑁 : 𝐴→ 𝐵

𝛤 ` 𝑁𝑀 : 𝐵

∀𝑖 . 𝛤 ` 𝑀𝑖 : 𝐴𝑖

𝛤 ` 〈𝑀1, ... , 𝑀𝑛〉 : (𝐴1 ∗ · · · ∗𝐴𝑛)
𝛤 ` 𝑀 : (𝐴1 ∗ · · · ∗𝐴𝑛)

𝛤, 𝑎1 : 𝐴1, ... , 𝑎𝑛 : 𝐴𝑛 ` 𝑁 : 𝐴

𝛤 ` match𝑀 with 〈𝑎1, ... , 𝑎𝑛〉. 𝑁 : 𝐴

𝛤 ` 𝑀 : 𝐴𝑖 𝐴 = {𝜄1 of 𝐴1 | · · · | 𝜄𝑛 of 𝐴𝑛}
𝛤 ` 𝐴.𝜄𝑖 𝑀 : 𝐴

𝛤 ` 𝑀 : {𝜄1 of 𝐴1 | · · · | 𝜄𝑛 of 𝐴𝑛}
∀𝑖 . 𝛤 , 𝑎𝑖 : 𝐴𝑖 ` 𝑁𝑖 : 𝐴

𝛤 ` match𝑀 with {𝜄1 𝑎1 .𝑁1 | · · · | 𝜄𝑛 𝑎𝑛 .𝑁𝑛} : 𝐴

𝜑 ∈ RMW𝑛 𝛤 ` 𝑀 : Loc 𝛤 ` 𝑁 : Val𝑛

𝛤 ` rmw𝜑 (𝑀 ;𝑁) : Val

𝛤 ` 𝑀 : Loc 𝛤 ` 𝑁 : Val

𝛤 ` 𝑀 := 𝑁 : 1

𝛤 ` 𝑀 : 𝐴 𝛤 ` 𝑁 : 𝐵

𝛤 ` 𝑀 ∥ 𝑁 : (𝐴 ∗ 𝐵)

Fig. 4. The 𝝀RA-calculus: (a) syntax and (b) typing rules.

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686

14 Yotam Dvir, Ohad Kammar, and Ori Lahav

The term rmw𝜑 (𝑀 ;𝑁) executes by evaluating 𝑀 to a location ℓ , then evaluating 𝑁 to a tuple
of values ®𝑤 =

〈
𝑤1, ... ,𝑤𝜑.ar

〉
. Then, atomically, reading a value 𝑣 from ℓ and writing 𝜑 ®𝑤𝑣 if it’s

defined. Regardless of whether the write occurred, the read value is returned.
We desugar the typical memory dereferencing primitives using our example modifier primitives:

𝑀? B rmwload (𝑀 ; 〈〉) CAS (𝑀, 𝑁, 𝐾) B rmwcas (𝑀 ; 〈𝑁,𝐾〉)

XCHG (𝑀, 𝑁) B rmwxchg (𝑀 ; 〈𝑁 〉) FAA (𝑀, 𝑁) B rmwfaa (𝑀 ; 〈𝑁 〉)
Assignment 𝑀 := 𝑁 is standard, executing by first evaluating 𝑀 to a location ℓ ; evaluating 𝑁
to a value 𝑣 ; storing the value 𝑣 at the location ℓ in memory; and finally returning 〈〉. Parallel
composition interleaves the execution of both its threads, and evaluates to the pair of results, one
for each thread.

We do not include loops in this language, which we leave to future work. While important,
recursion will muddy the waters substantially, requiring us to bring into context domain theo-
retic concepts like least upper-bounds of 𝜔-chains and powerdomain constructions. Even without
recursion, 𝝀RA is expressive enough for us to discuss interesting examples and transformations.

We use standard syntactic sugar:
Let-binding let𝑎 = 𝑀 in𝑁 B match 〈𝑀〉 with 〈𝑎〉. 𝑁
Value tuples Val𝑛 B (Val ∗ · · · ∗ Val)
Enum. type {𝜄1 | · · · | 𝜄𝑛 } B {𝜄1 of 1 | · · · | 𝜄𝑛 of 1}

Sequencing 𝑀 ; 𝑁 B let _ = 𝑀 in𝑁
Unit 1 B ()
Enum. label 𝐴.𝜄 B 𝐴.𝜄 〈〉

Remark. RMWs, unlike assignments, must modify an existing message in memory.Thus, assignment
𝑀 := 𝑁 is not equivalent to an XCHG that discards its read value, i.e. XCHG (𝑀, 𝑁) ; 〈〉.

Type system. We present the type system in Figure 4(b). Each typing judgment 𝛤 ` 𝑀 : 𝐴 relates
a type𝐴, a term𝑀 , and a typing context 𝛤 which associates to each of𝑀’s unbound variable𝑎 a type
𝐵𝑎 , written (𝑎 : 𝐵𝑎) ∈ 𝛤 . We write · for the empty context, and say that𝑀 is closed if · ` 𝑀 : 𝐴. The
shadowing extension of 𝛤 by 𝑐 : 𝐶 , denoted 𝛤, 𝑐 : 𝐶 , is equal to 𝛤 except for associating 𝐶 to 𝑐 . The
typing rules for the shared-memory constructs are standard, and reflect their informal explanation
above. In particular, for RMW the arity of the tuple must match the arity of the modifier. Each term
has at most one type in a given typing context, and in that case the typing derivation is unique.
We denote by 𝛤 ` 𝐴 the set of terms {𝑀 | 𝛤 ` 𝑀 : 𝐴}.

A program is a closed term of ground type—iterated sum and product types:

𝐺 ::= (𝐺1 ∗ · · · ∗𝐺𝑛) | {𝜄1 of 𝐺1 | · · · | 𝜄𝑛 of 𝐺𝑛} (Ground types)

5 OPERATIONAL SEMANTICS FOR RELEASE/ACQUIRE CONCURRENCY
We start this section with a precise account of the “view-based” machine (§5.1) presented in §2.3.
We observe that this semantics admits a non-deterministic view forwarding step (§5.2) which our
metatheory uses. Our denotational semantics also accounts for both known and novel semantic
invariants on the memories that can evolve when executing a well-typed program (§5.3).

5.1 View-based Semantics
Our formalization of the operational semantics follows Kang et al. [28] and Kaiser et al. [27]. The
account below grounds the explanations we gave in §2.3 more formally.

Timestamps. We maintain a per-location timestamp order, which constrains the order in which
threads will read values from memory. We use rational numbers Q as timestamps, ranged over by
𝑡, 𝑞, 𝑝 , though any choice of an infinite, dense, and totally-ordered set suffices.

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735

A Denotational Approach to Release/Acquire Concurrency 15

Views. A view is a location-indexed tuple of timestamps, i.e. an element (𝜅ℓ)ℓ∈Loc in View B
QLoc. We let 𝛼, 𝜅, 𝜎, 𝜔 range over views. In examples with Loc = {x, y}, we denote by ⟪x@𝑡 ; y@𝑞⟫
the view that has 𝑡 in the x component and 𝑞 in the y component. We order views location-wise,
i.e. 𝛼 ≤ 𝜔 when ∀ ℓ ∈ Loc. 𝛼ℓ ≤ 𝜔ℓ , and in this case say that 𝜔 dominates 𝛼 . We also employ t and
u for pointwise maximum and minimum of views, and denote by 𝜅 [ℓ ↦→ 𝑡] the view that is equal
to 𝜅 everywhere except ℓ , where it equals 𝑡 .

Messages. A message 𝜈 is a tuple in Msg B Loc × Val × Q × View, written 𝜈 = ℓ :𝑣@(𝑞, 𝜅ℓ]⟪𝜅⟫,
where 𝑞 < 𝜅ℓ . Here, ℓ is the location of the message, 𝑣 is the value of the message, 𝑞 is the initial
timestamp of the message, and 𝜅 is the view of the message. We say this message dovetails another
message if its timestamp is 𝑞.

We use projection-notation for components of 𝜈 : 𝜈.lc B ℓ , 𝜈.vl B 𝑣 , 𝜈.i B 𝑞, and 𝜈.vw B 𝜅.
The (final) timestamp of the message is 𝜈.t B 𝜅ℓ . In concrete examples, we reduce duplication
by eliding the timestamp from the view, e.g. y:0@(0.5, 4.2] ⟪x@1⟫. The message’s two timestamps
delimit the segment of the message: the interval 𝜈.seg B (𝜈.i, 𝜈 .t].

We range over messages using 𝜈, 𝜖, 𝛽 . We extend notation from messages to sets of messages by
direct image: for example, given a set 𝜇 of messages, define 𝜇.seg B {𝜈.seg | 𝜈 ∈ 𝜇}.

Memories. A memory is a finite non-empty set of messages. We let 𝜇, 𝜌, 𝜃 range over memories,
and denote the set of messages in 𝜇 at location ℓ by 𝜇ℓ B {𝜈 ∈ 𝜇 | 𝜈.lc = ℓ}.

Example 5.1. Thememory illustrated at the top of Figure 7(a) could have resulted from a program
execution starting with the memory {𝜈1, 𝜖1}. A program may add messages out of the timeline
order (𝜖3 before 𝜖2); dovetail messages (𝜈2 .t = 𝜈3.i); or leave gaps between messages (𝜈1 .t < 𝜈2.i).
Message views need not increase along the timeline (𝜖2 .t ≤ 𝜖3 .t yet 𝜖2.vw 6≤ 𝜖3 .vw).

View trees. Kang et al.’s [28] original presentation of the view-based semantics studies top-level
parallelism, requiring flat thread-view mappings. Since we allow nesting of parallel composition
anywhere in the program, we use a nested view-tree mapping. Formally, a view-tree is a binary
tree with view-labeled leaves. We denote the set of view-trees by VTree, ranged over by 𝑇, 𝑅, 𝐻 .
We denote: by ¤𝜅 the leaf with label 𝜅; by 𝑇̂𝑅 the tree whose immediate left and right subtrees
are𝑇 and 𝑅; and by𝑇 .lf the set of labels of leaves of a view-tree𝑇 . We lift the order ≤ from views
to view-trees leaf-wise: ¤𝜅 ≤ ¤𝜎 when 𝜅 ≤ 𝜎 , and 𝑇̂𝑅 ≤ 𝑇 ′̂𝑅′ when 𝑇 ≤ 𝑇 ′ and 𝑅 ≤ 𝑅′.

Operational semantics. Figure 5 presents the operational semantics for 𝝀RA. A configuration
〈𝑇, 𝜇〉 , 𝑀 consists of a view-tree𝑇 capturing the view of all active threads; the current memory 𝜇;
and a closed term𝑀 . The state of the configuration is the pair 〈𝑇, 𝜇〉. The relation 𝑒

 RA represents
(atomic) steps between configurations. The label 𝑒 , distinguishing the memory-accessing steps (•)
from the rest (◦), is used as a proof tool (Appendix B.3) and can be otherwise ignored. We denote
 RA B

•
 RA ∪

◦
 RA.

Sequential CBV constructs. We omit the standard CBV transitions, demonstrating the standard
congruence and 𝛽-reduction steps for function application: App, AppLeft, AppRight. Values are:

𝑉 ,𝑊 ::= 〈𝑉1, ... ,𝑉𝑛〉 | 𝐴.𝜄 𝑉 | 𝜆𝑎 : 𝐴.𝑀 (Values)

The congruence steps include the assignment and RMW construct, and use any view-trees 𝑇 ,𝑇 ′
and memories 𝜇,𝜇′ which they maintain between the inductive hypothesis and conclusion. The
𝛽-reduction steps use any view-leaf ¤𝜅 and memory 𝜇 which they maintain across the transition.

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784

16 Yotam Dvir, Ohad Kammar, and Ori Lahav

App

〈 ¤𝜅, 𝜇〉 , (𝜆𝑎 : 𝐴.𝑀)𝑉 ◦
 RA 〈 ¤𝜅, 𝜇〉 , 𝑀 [𝑎 ↦→ 𝑉]

AppLeft
〈𝑇, 𝜇〉 , 𝑀 𝑒

 RA
〈
𝑇 ′, 𝜇′

〉
, 𝑀 ′

〈𝑇, 𝜇〉 , 𝑀𝑁 𝑒
 RA

〈
𝑇 ′, 𝜇′

〉
, 𝑀 ′𝑁

AppRight
〈𝑇, 𝜇〉 , 𝑁 𝑒

 RA
〈
𝑇 ′, 𝜇′

〉
, 𝑁 ′

〈𝑇, 𝜇〉 ,𝑉𝑁 𝑒
 RA

〈
𝑇 ′, 𝜇′

〉
,𝑉𝑁 ′

PaRInit

〈 ¤𝜅, 𝜇〉 , 𝑀 ∥ 𝑁 ◦
 RA

〈
¤𝜅̂ ¤𝜅, 𝜇〉 , 𝑀 ∥ 𝑁

PaRFin
𝜔 = 𝜅 t 𝜎〈

¤𝜅̂ ¤𝜎, 𝜇〉 ,𝑉 ∥𝑊 ◦
 RA 〈 ¤𝜔, 𝜇〉 , 〈𝑉 ,𝑊 〉

PaRLeft
〈𝑇, 𝜇〉 , 𝑀 𝑒

 RA
〈
𝑇 ′, 𝜇′

〉
, 𝑀 ′〈

𝑇̂𝑅, 𝜇
〉
, 𝑀 ∥ 𝑁 𝑒

 RA
〈
𝑇 ′̂𝑅, 𝜇′

〉
, 𝑀 ′ ∥ 𝑁

PaRRight
〈𝑅, 𝜇〉 , 𝑁 𝑒

 RA
〈
𝑅′, 𝜇′

〉
, 𝑁 ′〈

𝑇̂𝑅, 𝜇
〉
, 𝑀 ∥ 𝑁 𝑒

 RA
〈
𝑇̂𝑅′, 𝜇′

〉
, 𝑀 ∥ 𝑁 ′

StoRe
𝛼ℓ < 𝑡 (𝑞, 𝑡] ∩

⋃
𝜇ℓ .seg = ∅ 𝜔 = 𝛼 [ℓ ↦→ 𝑡]

〈 ¤𝛼, 𝜇〉 , ℓ := 𝑣 • RA 〈 ¤𝜔, 𝜇] {ℓ :𝑣@(𝑞,𝜔ℓ]⟪𝜔⟫}〉 , 〈〉
ReadOnly
ℓ :𝑣@(_, 𝜅ℓ]⟪𝜅⟫ ∈ 𝜇 𝛼ℓ ≤ 𝜅ℓ 𝜑 ®𝑤𝑣 = ⊥ 𝜔 = 𝛼 t 𝜅

〈 ¤𝛼, 𝜇〉 , rmw𝜑 (ℓ ; ®𝑤)
•
 RA 〈 ¤𝜔, 𝜇〉 , 𝑣

RMW
ℓ :𝑣@(𝑞, 𝜅ℓ]⟪𝜅⟫ ∈ 𝜇 𝛼ℓ ≤ 𝜅ℓ 𝜑 ®𝑤𝑣 ≠ ⊥ (𝜅ℓ , 𝑡] ∩

⋃
𝜇ℓ .seg = ∅ 𝜔 = (𝛼 t 𝜅) [ℓ ↦→ 𝑡]

〈 ¤𝛼, 𝜇〉 , rmw𝜑 (ℓ ; ®𝑤)
•
 RA

〈
¤𝜔, 𝜇]

{
ℓ :𝜑 ®𝑤𝑣@(𝜅ℓ , 𝜔ℓ]⟪𝜔⟫

}〉
, 𝑣

Fig. 5. The operational semantics of 𝝀RA (selected rules).

Substitution. A (program) substitution Θ is a partial function from program variables to closed
values, which extends to the identity on all other variables, and then to terms by recursively ap-
plying to subprograms, removing bound variables from the substitution’s domain, e.g.:

Θ (match𝑀 with 〈𝑎1, ... , 𝑎𝑚〉. 𝑁) B matchΘ𝑀 with 〈𝑎1, ... , 𝑎𝑚〉. Θ|∉{𝑎1,...𝑎𝑚 }𝑁
where Θ|∉X is obtained by removing X from Θ’s domain. We write𝑀 [𝑉1/𝑎1 ...𝑉𝑛/𝑎𝑛] for the appli-
cation of the substitution that maps 𝑎𝑖 ↦→ 𝑉𝑖 on𝑀 .

Parallel composition. The PaRInit rule initializes a parallel composition by duplicating its view-
leaf to a new node. The rules PaRLeft and PaRRight non-deterministically interleave the evalua-
tion of the left and right threads. After both threads evaluate, PaRFin joins the thread views back
into a single leaf, and returns the pair of results.

Example. We show an example execution from a birds-eye view:

〈𝜇0, ¤𝛼〉 , 𝑀 ; (𝑁1 ∥ 𝑁2) ∗
RA 〈𝜇1, ¤𝛼 ′〉 , 𝑁1 ∥ 𝑁2 RA

〈
𝜇1, ¤𝛼 ′̂ ¤𝛼 ′〉 , 𝑁1 ∥ 𝑁2

 ∗
RA

〈
𝜌, ¤𝜔1̂ ¤𝜔2

〉
,𝑉1 ∥ 𝑉2 RA 〈𝜌, ¤𝜔1 t 𝜔2〉 , 〈𝑉1,𝑉2〉

First,𝑀 runs until it returns a value, which is discarded by the sequencing construct. Next, the parallel
composition 𝑁1 ∥ 𝑁2 activates. The threads then interleave executions, each with its associated side

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833

A Denotational Approach to Release/Acquire Concurrency 17

of the view-tree, interacting via the shared memory. Finally, once each thread returns a value, they
synchronize.

Assignment. The StoRe rule for location ℓ picks a free segment (𝑞, 𝑡] where 𝑡 is strictly greater
than the thread’s view for ℓ . The step updates this thread’s view to 𝜔 by increasing the timestamp
for ℓ to 𝑡 ; adds a message to memory with this updated view 𝜔 ; and returns the unit value.

Read-modify-write. TheReadOnly and RMWrules for the rmw construct both start by picking a
message to the given location to read from that has the same or a larger timestamp than the thread’s
view, then incorporate the message’s view in the thread’s view, and finally return the value they
read. If the given primitive modifier is undefined for the given parameters and message’s value,
nothing else happens (ReadOnly rule). If the modifier is defined (RMW rule), much like the StoRe
rule, a timestamp strictly greater than the thread’s view for the location is chosen to update the
thread’s view, and a message is added with this updated view. In contrast to the StoRe rule, here
the added message’s segment must dovetail with the message from which the RMW read, still
avoiding any existing segment in this location. This dovetailing is only possible if we read from
a message with no dovetailing succeeding message. In particular, a message can only be picked
once to justify the RMW rule during an execution.

Initial memory and configuration. An initial memory 𝜇 is a memory in which every location
has exactly one message whose view contains the timestamps of the other messages. An initial
configuration state is one with an initial memory and a view-leaf mapping each location to the
timestamp of the unique message in memory of that location.

Evaluation. We’re interested in the behaviors closed terms exhibit when run to completion. Let
the Kleene star (∗) denote the reflexive-transitive closure of a relation. A configuration 〈𝑇, 𝜇〉 , 𝑀
evaluates to a value 𝑉 , written 〈𝑇, 𝜇〉 , 𝑀 ⇓RA 𝑉 , when 〈𝑇, 𝜇〉 , 𝑀 ∗

RA 〈𝑅, 𝜌〉 ,𝑉 for some state
〈𝑅, 𝜌〉. We write 〈𝑇, 𝜇〉 , 𝑀 6⇓RA 𝑉 when there is no such 〈𝑅, 𝜌〉. In the next examples, we write
𝑀 ⇓RA 𝑉 when 𝑀 may evaluate to 𝑉 from every initial state, and 𝑀 6⇓RA 𝑉 when it cannot
evaluate to 𝑉 from any initial state.

Example 5.2. We can give a more precise account of the litmus tests (SB) and (MP) from §2:

x := 0 ; y := 0 ; ((x := 1 ; y?) ∥ (y := 1 ; x?)) ⇓RA 〈0, 0〉
x := 0 ; y := 0 ; ((x := 1 ; y := 1) ∥ 〈y?, x?〉) 6⇓RA 〈〈〉 , 〈1, 0〉〉

5.2 Non-deterministic View Forwarding

Adv
ℓ :𝑣@(𝑞, 𝜅ℓ]⟪𝜅⟫ ∈ 𝜇

𝛼ℓ ≤ 𝜅ℓ 𝜔 = 𝛼 t 𝜅
〈 ¤𝛼, 𝜇〉 , 𝑀 RA≤ 〈 ¤𝜔, 𝜇〉 , 𝑀

Fig. 6. The Adv rule.

It is technically convenient to extend RA with an additional step
that non-deterministically advances the view of a thread.The effect of
this step is to prohibit the thread from reading certain messages from
memory, and propagating this prohibition to other threads that read
values this thread writes. We think of this step as read-independent
propagation of updates to threads. Lahav et al. [32] propose a similar
extension when defining liveness conditions for RA.

Formally, we obtain RA≤ by adding the Adv rule in Figure 6 to
the rules presented in Figure 5, after replacing RA with RA≤ and removing the labels. The Adv
step advances the thread’s view like the ReadOnly rule without changing the term component
of the configuration. A-priori, the resulting system may exhibit more behaviors since StoRe and
RMW steps will append messages with further advanced views. However, advancing views within
messages only further constrains possible behaviors.

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882

18 Yotam Dvir, Ohad Kammar, and Ori Lahav

We formalize this intuition using a simulation argument. One direction is straightforward: every
execution in RA is an execution in RA≤ that doesn’t use Adv, and so RA≤ exhibits every behavior
RA does. For the converse, we define a binary relation between configuration states ¥ such that
〈𝑇, 𝜇〉 ¥ 〈𝑅, 𝜌〉 when the following hold.
• The simulatee’s view-tree dominates the simulator’s view-tree: 𝑅 ≤ 𝑇 .
• There are bijections 𝜙ℓ : 𝜇ℓ → 𝜌ℓ for every location ℓ such that if 𝜙ℓ (𝜈) = 𝜖 , then the

view of the simulatee’s message dominates the simulator’s message: 𝜖.vw ≤ 𝜈.vw, and the
messages’ value and segment agree: 𝜈.vl = 𝜖.vl, 𝜈 .i = 𝜖.i, 𝜈 .t = 𝜖.t.

The relation ¥ is a weak simulation:

PRoposition 5.3. If 〈𝑇, 𝜇〉 ¥ 〈𝑅, 𝜌〉 and 〈𝑇, 𝜇〉 , 𝑀 RA≤ 〈𝑇 ′, 𝜇′〉 , 𝑀 ′, then there exists a configu-
ration state 〈𝑅′, 𝜌 ′〉 such that 〈𝑅, 𝜌〉 , 𝑀 ∗

RA 〈𝑅′, 𝜌 ′〉 , 𝑀 ′ and 〈𝑇 ′, 𝜇′〉 ¥ 〈𝑅′, 𝜌 ′〉.

Like RA, so does RA≤ yield an evaluation semantics ⇓RA≤ . By Proposition 5.3, they coincide:

CoRollaRy 5.4. For every configuration 〈𝑇, 𝜇〉 , 𝑀 and value 𝑉 :

〈𝑇, 𝜇〉 , 𝑀 ⇓RA 𝑉 ⇐⇒ 〈𝑇, 𝜇〉 , 𝑀 ⇓RA≤ 𝑉

Thus, we denote both by ⇓.

5.3 Semantic Invariants
Our denotational model uses semantic invariants that initial states possess and RA≤ steps preserve.
During our presentation of the invariants we give intuitive explanations for why the hold. These
are formally grounded in Theorem 5.15 and Proposition 5.18 below.

Basic memory invariants. A memory 𝜇 is scattered when the segments of messages in the same
location are pairwise disjoint: ∀ ℓ ∈ Loc∀𝜈, 𝜖 ∈ 𝜇ℓ . 𝜈 .seg∩𝜖.seg ≠ ∅ =⇒ 𝜈 = 𝜖 . Initial memories
are scattered and execution steps preserve this property since added messages can only occupy
unused segments.

Example 5.5. This memory is scattered, which we visualise using the scattering condition:
y:1@(−1, 0] ⟪x@5⟫, y:3@(0, 7] ⟪x@8⟫

x:0@(−1, 0] ⟪y@0⟫, x:2@(4, 5] ⟪y@7⟫

 x: 0@(−1,⟪0 ; y@0⟫]𝜈1 2@(4,⟪5 ; y@7⟫]𝜈2

y: 1@(−1,⟪0 ; x@5⟫]𝜖1 3@(0,⟪7 ; x@8⟫]𝜖2

We think of timestamps as names, i.e., abstract pointers. Formally, a view 𝜅 points to a message
𝜖 , denoted by 𝜅 � 𝜖 , when 𝜅 holds 𝜖’s timestamp at 𝜖’s location: 𝜅𝜖.lc = 𝜖.t. A view 𝜅 points
to memory 𝜇, denoted by 𝜅 � 𝜇, when it points to a 𝜇-message in all locations: ∀ ℓ ∈ Loc∃ 𝜖 ∈
𝜇ℓ . 𝜅 � 𝜖 . A message 𝜈 points to another message 𝜖 or memory 𝜇 when its view 𝜈.vw points to that
message or memory, denoted by 𝜈 � 𝜖 and 𝜈 � 𝜇. A memory 𝜇 is connected when it is scattered,
and every message within it points to it: ∀𝜈 ∈ 𝜇. 𝜈 � 𝜇.

Example 5.6. Example 5.5’s memory is not connected: 𝜖2 doesn’t point to any message in x. This
memory is connected (left), with its timestamp orders (middle) and points-to relations (right):

y:2@(−1, 5] ⟪x@0⟫, y:4@(0, 7] ⟪x@0⟫

x:1@(−1, 0] ⟪y@0⟫, x:3@(4, 5] ⟪y@7⟫

 x: 1
𝜈1 3

𝜈2

y: 2
𝜖1 4

𝜖2 𝜈1 𝜖2

𝜖1 𝜈2

y

x

x

y

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931

A Denotational Approach to Release/Acquire Concurrency 19

Initial memories are connected, and execution steps preserve memory connectedness, assuming
that all thread views point to the currentmemory: when a thread adds amessage tomemory, it uses
its own view with an advanced timestamp for the message’s location, maintaining connectedness.

Causal memory invariants. The points-to relation tracks some causal dependencies. Intuitively,
events should not be caused by future events, so causal paths, i.e. paths in 𝜇.gph B

〈
𝜇, (�)\id𝜇

〉
,

should not lead to the future along any timeline. We refine the points-to relation to enforce this.
Formally, we say that a view 𝜅 points downwards to a message 𝜖 , written 𝜅 ↩→ 𝜖 when it points

to it, 𝜅 � 𝜖 , and it dominates 𝜖’s view, 𝜅 ≥ 𝜖.vw. A view points downwards into a scattered
memory 𝜇, denoted by 𝜅 ↩→ 𝜇, when it points downward to a message in 𝜇 in every location, i.e.:
∀ ℓ ∈ Loc∃ 𝜖 ∈ 𝜇ℓ . 𝜅 ↩→ 𝜖 . We say that a message points downward into a memory, writing 𝜈 ↩→ 𝜇,
when its view does: 𝜈.vw ↩→ 𝜇. We say that a memory 𝜇 is causally connected, when it is connected,
and every message within it points downwards into it: ∀𝜈 ∈ 𝜇. 𝜈 ↩→ 𝜇.

To further conserve space in the following examples, we omit locations from messages, instead
tagging the row in the set. For example, by 5@(6, 7] ⟪7⟫ in the y row we mean y:5@(6, 7] ⟪x@7⟫.

Example 5.7. The memory from Example 5.6 is not causally connected because 𝜖1 � 𝜈2 while
nonetheless 𝜖1.vwy = 0 � 7 = 𝜈2 .vwy. The following memory is causally connected:

y : 1@(−1, 0] ⟪0⟫, 3@(0, 5] ⟪0⟫, 5@(6, 7] ⟪7⟫

x : 0@(−1, 0] ⟪0⟫, 2@(4, 5] ⟪0⟫, 4@(5, 7] ⟪7⟫

 x: 0
𝜈1 2

𝜈2 4
𝜈3

y: 1
𝜖1 3

𝜖2 5
𝜖3 𝜈1 𝜖2 𝜈3

𝜖1 𝜈2 𝜖3

y

x

yx
y

x

Initial memories are causally connected, and execution steps preserve this together with view-
trees labeled solely by downward-pointing views. In showing this, particularly when observing
steps that load a message, the following fact helps; pointing downwards is a stronger condition
than may first appear:

Lemma 5.8. Assume 𝜇 is causally connected. Then 𝜅 ↩→ 𝜇 iff 𝜅 =
⊔ {𝜖 ∈ 𝜇 | 𝜅 � 𝜖}.vw.

Paths in a causally connected memory’s graph descend down its timelines:

PRoposition 5.9. Let 𝜇 be a scattered, downward pointing memory, with a path 𝜈 �∗ 𝜖 in 𝜇.gph.
(1) Views decrease along the path: 𝜈.vw ≥ 𝜖.vw.
(2) If there is also a path 𝜖 �∗ 𝜈 , i.e., 𝜈 and 𝜖 are part of a cycle, then 𝜈.vw = 𝜖.vw.
(3) If they share the location, 𝜈.lc = 𝜖.lc, their timestamps decrease along the path: 𝜈.t ≥ 𝜖.t.

If a causally connected memory 𝜇 has a message in location ℓ , then it has a timestamp-minimal
one which we denote bymin 𝜇ℓ , i.e. (min 𝜇ℓ).t = min 𝜇ℓ .t. We say that causally connected memory
𝜇 is well-formed when it has at least one message at each location, and cycles within 𝜇.gph consist
solely of minimal messages, i.e. if 𝜈 ∈ 𝜇 is part of a cycle in 𝜇.gph, then 𝜈 = min 𝜇𝜈.lc.

Example 5.10. Thememory from Example 5.7 is not well-formed: its minimal messages are 𝜈1,𝜖1,
but 𝜈3 and 𝜖3 are on a cycle. The following memory is:

y : 1@(−1, 0] ⟪0⟫, 3@(0, 5] ⟪7⟫, 5@(6, 7] ⟪0⟫

x : 0@(−1, 0] ⟪0⟫, 2@(4, 5] ⟪7⟫, 4@(5, 7] ⟪0⟫

 x: 0
𝜈1 2

𝜈2 4
𝜈3

y: 1
𝜖1 3

𝜖2 5
𝜖3 𝜈1 𝜖3 𝜈2

𝜖1 𝜈3 𝜖2

y

x y

x
y x

A hypothetical language that allows atomic initialization of cyclic pointers in RA memory lo-
cations might include a construct for simultaneous mutation and will violate this invariant, but

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980

20 Yotam Dvir, Ohad Kammar, and Ori Lahav

y

x
-2
|

-1
|

0
|

1
|

-.5
|

.5
|

1.7
|

x:1@(92, 91] ⟪y@1⟫𝜈1 x:2@(9.5, .5] ⟪y@1⟫𝜈2 x:1@(.5, 1.7] ⟪y@3.5⟫𝜈3

y:1@(0, 1] ⟪x@91⟫𝜖1 y:7@(1, 2] ⟪x@ .5 ⟫𝜖2 y:3@(3, 3.5] ⟪x@91⟫𝜖3

0
|

1
|

2
|
3
|

3.5
|

y

x
-2
|

-1
|

0
|

1
|

-.5
|

.5
|

1.7
|

x:1@(92, 91] ⟪y@1⟫𝜈1 x:2@(9.5, .5] ⟪y@1⟫𝜈2 x:1@(.5, 1.7] ⟪y@3.5⟫𝜈3

y:1@(0, 1] ⟪x@91⟫𝜖1 y:7@(1, 2] ⟪x@ 1.7 ⟫𝜖2 y:3@(3, 3.5] ⟪x@91⟫𝜖3

0
|

1
|

2
|
3
|

3.5
|

Fig. 7. Two variations on the memory illustrated in Figure 1. Top: This memory is well-formed. It demon-
strates that the views of messages along a timeline do not have to be ordered: 𝜖2 appears earlier than 𝜖3
on y’s timeline but points to a later message on x’s timeline. Bottom: This memory is not well-formed be-
cause it contains an ascending path, in contradiction to Proposition 5.9. Intuitively, no thread could have
written 𝜖2 because the view that 𝜖2 carries indicates that the thread would have already “known” about 𝜈3
and therefore, following the causality chain, about 𝜖3 as well. Thus, the thread would have been forbidden
from picking 𝜖2’s timestamp.

𝝀RA maintains it: initial memories are well-formed, and being well-formed is an invariant of execu-
tion steps. Indeed, messages are added one-by-one and point to existing messages, so they cannot
from a new cycle; and messages are added with a larger timestamp, so minimal messages remains
minimal.

PRoposition 5.11. Let 𝜇 be a well-formed memory, and ℓ ∈ Loc.

(1) Minimal messages point at minimal messages: if min 𝜇ℓ ↩→ 𝜈 , then 𝜈 is a minimal message.
(2) Memory extension preserves minimal messages: if 𝜇 ⊆ 𝜌 is well-formed, thenmin 𝜇ℓ = min 𝜌ℓ .

We denote the set of well-formed memories by Mem. Figure 7 gives a positive example (top)
and a negative example (bottom).

View-tree invariants. Like memories, view-trees also satisfy certain invariants during execution.
In particular, the invariant that all thread views point downwards into the currentmemory depends
on the invariants of memory, and vice-versa. Formally, we say that a view-tree points to/downward
into memory 𝜇, and write 𝑇 � 𝜇 and 𝑇 ↩→ 𝜇 when 𝜅 � 𝜇 and 𝜅 ↩→ 𝜇 for every 𝜅 ∈ 𝑇 .lf. We
then say that a state 〈𝑇, 𝜇〉 is well-formed when 𝜇 is well-formed and 𝑇 ↩→ 𝜇.

While the labels of the view-tree are related to the memory, its structure is intimately related to
the syntactic structure of the configuration’s term.We define this property as an inductive relation
𝑇 � 𝑀 specifying when𝑇 iswell-formed for a term𝑀 . Every view-leaf is well-formed for any term.
A view-node is well-formed for a parallel composition only when its immediate subtrees are well-
formed for each thread. The rest of the rules reach through the term’s evaluation context until
they find a parallel composition sub-term. These follow the congruence rules from the operational

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029

A Denotational Approach to Release/Acquire Concurrency 21

semantics, which we demonstrate with the 𝜆-L and 𝜆-R rules:

Leaf

¤𝜅 � 𝑀

Node
𝑇 � 𝑀 𝑅 � 𝑁

𝑇̂𝑅 � 𝑀 ∥ 𝑁

𝜆-L
𝑇̂𝑅 � 𝑀

𝑇̂𝑅 � 𝑀𝑁

𝜆-R
𝑇̂𝑅 � 𝑁

𝑇̂𝑅 � 𝑉𝑁

Example 5.12. For 𝑀 = (𝜆𝑎. 𝑁1 ∥ 𝑁2) (𝑀1 ∥ 𝑀2), we have ¤𝜅 � 𝑀 and ¤𝜅1̂ ¤𝜅2 � 𝑀 . Intuitively,
the evaluation context in𝑀 is (𝜆𝑎. 𝑁1 ∥ 𝑁2) [−], and the active component—where reduction takes
place—is (𝑀1 ∥ 𝑀2). The execution of 𝑁1 ∥ 𝑁2 is suspended under the 𝜆-abstraction, so we asso-
ciate no views with its threads. The view-node is well-formed for the active component by Node.

For 𝑁 = (𝜆𝑎. 𝑁1 ∥ 𝑁2)𝑉 , the view node is not well-formed: ¤𝜅1̂ ¤𝜅2 1 𝑁 . The evaluation context
is empty, and the active (single) thread is (𝜆𝑎. 𝑁1 ∥ 𝑁2)𝑉 : the next execution step has to be 𝜆-App.
Only a view-leaf is well-formed for such a program.

When a tree is well-formed for a program, each view in 𝑇 corresponds to an 𝑀-subterm by
following the derivation of 𝑇 � 𝑀 up to the leaves:

PRoposition 5.13. Every tree well-formedness judgement 𝑇 � 𝑀 has a unique derivation, the
leaves of which induce an injective mapping from 𝑇 ’s view-leafs to𝑀’s subterms.

Example 5.14. The leaves of the unique derivation tree for ¤𝜅1̂ ¤𝜅2 � (𝜆𝑎. 𝑁1 ∥ 𝑁2) (𝑀1 ∥ 𝑀2)
are the instances ¤𝜅𝑖 � 𝑀𝑖 of the Leaf rule.

Execution invariants. Collecting the invariants, a configuration 〈𝑇, 𝜇〉 , 𝑀 is well-formed of type
𝐴 when: its state 〈𝑇, 𝜇〉 is well-formed; its term is (necessarily uniquely) well-typed · ` 𝑀 : 𝐴; and
its view-tree is well-formed for its term: 𝑇 � 𝑀 . The steps of RA≤ preserve well-formedness:

TheoRem 5.15 (pReseRvation). If 〈𝑇, 𝜇〉 , 𝑀 RA≤ 〈𝑅, 𝜌〉 , 𝑁 and 〈𝑇, 𝜇〉 , 𝑀 is a well-formed con-
figuration of type 𝐴, then 〈𝑅, 𝜌〉 , 𝑁 is a well-formed configuration of type 𝐴.

From now on, we only consider steps between well-formed configurations.
Execution stepsmaintain some relationships between initial and final states. First, the timestamp

of a new message lies between some thread’s initial and final views:

Lemma 5.16. Assume 〈𝑇, 𝜇〉 , 𝑀 RA≤ 〈𝑅, 𝜌〉 , 𝑁 changed the memory, i.e. 𝜌 ≠ 𝜇. Then: the trees
have the same shape; 𝑇 ≤ 𝑅; and there is a message 𝜈 such that 𝜌 = 𝜇] {𝜈}. Moreover, there are
view-leaves ¤𝛼 in 𝑇 and ¤𝜔 in 𝑅 in corresponding positions, such that 𝛼 ≤ 𝜈.vw ≤ 𝜔 and 𝛼𝜈.lc < 𝜈.t.

The view-tree structure changes during PaRInit and PaRFin, so they cannot always be com-
pared leaf-to-leaf as in Lemma 5.16. However, the sets of views that label each tree still maintain
the Egli-Milner order induced by the view order:

Lemma 5.17 (Egli-MilneR foR view-leaves). Assume 〈𝑇, 𝜇〉 , 𝑀 ∗
RA≤
〈𝑅, 𝜌〉 , 𝑁 .

• For every 𝛼 ∈ 𝑇 .lf, there exists a leaf 𝜔 ∈ 𝑅.lf, such that 𝛼 ≤ 𝜔 .
• For every 𝜔 ∈ 𝑅.lf, there exists a leaf 𝛼 ∈ 𝑇 .lf, such that 𝛼 ≤ 𝜔 .

We combine Lemmas 5.16 and 5.17 to obtain the following execution invariant:

PRoposition 5.18 (Views delimit execution). Assume 〈𝑇, 𝜇〉 , 𝑀 ∗
RA≤
〈𝑅, 𝜌〉 , 𝑁 . Assume that

𝛼 is dominated by every view in𝑇 .lf, and that 𝜔 dominates every view in 𝑅.lf. Then 𝛼 ≤ 𝜔 ; and for
every added message 𝜈 ∈ 𝜌 \ 𝜇, both 𝛼 ≤ 𝜈.vw ≤ 𝜔 and 𝛼𝜈.lc < 𝜈.t.

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078

22 Yotam Dvir, Ohad Kammar, and Ori Lahav

Interrupted executions. To analyze program behavior under concurrent contexts, we have to take
into account all possible ways in which the environment can interfere during the execution. An
interrupted execution 〈𝑇, 𝜇〉 , 𝑀 ∗

RA≤· · ·
∗
RA≤ 〈𝑅, 𝜌〉 ,𝑉 from a closed term 𝑀 to a value 𝑉 is a

sequence of executions of the form

〈𝑇, 𝜇〉 , 𝑀 = 〈𝑇1, 𝜇1〉 , 𝑀1 ∗
RA≤ 〈𝑇2, 𝜌1〉 , 𝑀2

〈𝑇2, 𝜇2〉 , 𝑀2 ∗
RA≤ 〈𝑇3, 𝜌2〉 , 𝑀3

...

〈𝑇𝑛, 𝜇𝑛〉 , 𝑀𝑛 ∗
RA≤ 〈𝑇𝑛+1, 𝜌𝑛〉 , 𝑀𝑛+1 = 〈𝑅, 𝜌〉 ,𝑉

where 𝜌 𝑗 ⊆ 𝜇 𝑗+1 for every 1 ≤ 𝑗 ≤ 𝑛−1. Between the executions in the sequence, the configuration
only changes by adding environment messages, the messages in 𝜇 𝑗+1 \ 𝜌 𝑗 , to the memory—the only
interference the environment can cause. We also have 𝜇𝑖 ⊆ 𝜌𝑖 , and we call the messages in 𝜌 𝑗 \ 𝜇 𝑗
local messages. Proposition 5.18 extends to interrupted executions in a straightforward manner,
replacing ∗

RA≤ with ∗
RA≤· · ·

∗
RA≤ and replacing added messages with local messages.

6 DENOTATIONAL SEMANTICS
Brookes-style traces (§6.1) adapted to describe behavior under RA, and Moggi’s monadic approach
(§6.2) to denotational semantics, combine to give our semantic framework (§6.3). We build upon
this framework in three stages.

First we define the generating denotational semantics (§6.4). The monad structure underlying
this semantics does not satisfy the monad laws, and so does not fully conform to the monadic
approach. Still, it is useful in forming a base for the next stage, as a metatheoretic tool, as well as
a means to simpler calculations.

Thus, we define the concrete denotational semantics (§6.5). Here we do have a monad, but the
denotational semantics follows the operational semantics too closely to be as abstract as we would
like, evident in program transformations that it does not support. This semantics is useful as an
intermediate step, and plays a central role in our proof of the adequacy theorem.

Finally, we define the abstract denotational semantics (§6.6). This is the semantics we were aim-
ing for: adequate and abstract enough to justify transformations of interest.

6.1 Trace-based Semantics
Traces are a semantic counterpart to interrupted executions. Their core component is a sequence
of memory-transitions, summarizing which messages the behavior they describe relies on and
guarantees. A (memory)-transition is pair 〈𝜇, 𝜌〉 of memories, such that 𝜇 ⊆ 𝜌 .

We capture the evolving assumptions and guarantees about memory messages by a chronicle:
a possibly empty finite sequence of transitions 𝜉 = 〈𝜇1, 𝜌1〉 ... 〈𝜇𝑛, 𝜌𝑛〉 where 𝜌 𝑗 ⊆ 𝜇 𝑗+1 for every
𝑗 . When 𝜉 is non-empty, we denote its opening and closing memories by 𝜉 .o B 𝜇1 and 𝜉 .c B
𝜌𝑛 . Its local messages are the ones added within transitions: 𝜉 .own B

⋃
𝑖∈{1,...,𝑛} (𝜌𝑖 \ 𝜇𝑖), and its

environment messages are the others. Let Chro be the set of chronicles, ranged over by 𝜉, 𝜂.
In the operational semantics, some messages are obscured from any particular thread due to

its view. The trace captures only an initial view that declares which messages may be relied on to
be available at the beginning, and a final view that declares which messages are guaranteed to be
available at the end. Together, these are the delimiting views.

Finally, a trace includes a semantic representation of the returned value [e.g. 6] Given a set
representing semantic return values 𝑋 , an 𝑋 -pre-trace is an element of View × Chro × View × 𝑋 ,
written 𝛼 𝜉 𝜔 ∴ 𝑟 , whose chronicle component is non-empty. We range over pre-traces with 𝜏, 𝜋, 𝜚 ,

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

A Denotational Approach to Release/Acquire Concurrency 23

and use 𝜏 .ivw (initial view), 𝜏 .ch (chronicle), 𝜏 .fvw (final view), 𝜏 .ret (returned value) to retrieve
the components of a pre-trace 𝜏 = 𝛼 𝜉 𝜔 ∴ 𝑟 in order.

Such an𝑋 -pre-trace 𝜏 is an𝑋 -trace when each transition in 𝜉 consists of well-formed memories;
the initial view precedes the final views, each pointing downwards into the opening and closing
memories respectively: 𝜉 .o ←↪ 𝛼 ≤ 𝜔 ↩→ 𝜉 .c; and the view and segment of every local message
are bound by the delimiting views, i.e.: ∀𝜈 ∈ 𝜉 .own. 𝛼 ≤ 𝜈.vw ≤ 𝜔 ∧ 𝛼𝜈.lc < 𝜈.t. These conditions
reflect well-formedness and the invariants fromTheorem 5.15 and Proposition 5.18. We denote the
set of 𝑋 -traces by Trace𝑋 . The bottom of Figure 1 depicts an example trace.

6.2 Monad-based Semantics
We recap Moggi’s [40] approach to interpret a CBV calculus like 𝝀RA using a monad. A monad
structure T = (T , returnT , (⟫=T)) consists of three components: a set-level function T ; a set-
indexed function returnT ; and a two-argument set-indexed function (⟫=T). The set-level func-
tion assigns to each set 𝑋 , whose elements represent fully-evaluated semantic values, the set T𝑋 ,
whose elements represent unevaluated effectful programs returning values in 𝑋 . The functions
returnT𝑋 : 𝑋 → T𝑋 , the unit, represent the program fragment that returns its input without any
observable side-effects.The two-argument functions (⟫=T𝑋,𝑌) : (T𝑋)×(𝑋 → T𝑌) → T𝑌 , themon-
adic bind, represent the sequencing 𝑃 ⟫=T𝑋,𝑌 𝑓 of an 𝑋 -returning program 𝑃 with an 𝑌 -returning
program 𝑓 that depends on the result of 𝑃 .

Moggi’s innovation is to take the traditional type and value semantics, following a long tradition
of denotational semantics, and retain its uniform structure even for effectful computation, by using
a monad-structure. Each construct has a corresponding semantic construct, and the interpretation
proceeds structurally over the structure of types, context and terms.

Type semantics. Every type 𝐴 denotes a set, where: product types denote the cartesian prod-
uct; variants denote tagged unions; function types use the monad structure to denote the set of
parameterized computations; and typing environments denote the cartesian product:J(𝐴1 ∗ · · · ∗𝐴𝑛)K B J𝐴1K × · · · × J𝐴𝑛K J𝐴→ 𝐵K B J𝐴K→ T J𝐵KJ{𝜄1 of 𝐴1 | · · · | 𝜄𝑛 of 𝐴𝑛}K B ({𝜄1 } × J𝐴1K) ∪ · · · ∪ ({𝜄𝑛 } × J𝐴𝑛K) J𝛤 K B

∏
(𝑎:𝐴) ∈𝛤 J𝐴K

In particular, denotations of ground types J𝐺K do not depend on the monad structure. For example,JValK is in a natural bijection with the set of (storable) values Val, and we will identify them.

Value semantics. Every value 𝛤 ` 𝑉 : 𝐴 denotes a function J𝑉 Kv : J𝛤 K→ J𝐴K, taking as argument
a semantic environment 𝛾 ∈ J𝛤 K supplying a semantic value to each variable in context:J𝑏Kv (𝛾𝑎) (𝑎:𝐴) ∈𝛤 B 𝛾𝑏 J〈𝑉1, ... ,𝑉𝑛〉Kv𝛾 B (J𝑉1Kv𝛾, ... , J𝑉𝑛Kv𝛾)J𝐴.𝜄 𝑉 Kv𝛾 B (𝜄 , J𝑉 Kv𝛾) J𝜆𝑏 : 𝐵.𝑀Kv(𝛾𝑎) (𝑎:𝐴) ∈𝛤 B 𝜆𝛾𝑏 . J𝑀Kv (𝛾𝑎) (𝑎:𝐴) ∈𝛤,𝑏:𝐵
Closed values · ` 𝑉 : 𝐴 denote functions from the singleton J·K := {()} to J𝐴K, so we write J𝑉 Kv

for J𝑉 Kv (). The semantics of closed ground values do not use the monad structure.

Term semantics. Every term 𝛤 ` 𝑀 : 𝐴 denotes a function J𝑀Kc : J𝛤 K → T J𝐴K. The monadic
bind expresses left-to-right evaluation order, and the unit expressing pure computation, e.g.:J𝑀𝑁 Kc𝛾 B J𝑀Kc𝛾 ⟫= 𝜆𝑔. J𝑁 Kc𝛾 ⟫= 𝜆𝑎. 𝑔(𝑎)J〈𝑀1, ... , 𝑀𝑛〉Kc𝛾 B J𝑀1Kc𝛾 ⟫= 𝜆𝑎1. · · · J𝑀𝑛Kc𝛾 ⟫= 𝜆𝑎𝑛 . return(𝑎1, ... , 𝑎𝑛)

Monad laws. While a monad structure suffices to define these interpretations, it does not suffice
to guarantee they behave as expected. For example, a nested tuple of values 𝑉 B 〈〈1, 2〉 , 3〉 has

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176

24 Yotam Dvir, Ohad Kammar, and Ori Lahav

the value semantics J𝑉 Kv = ((1, 2), 3) and the term semantics:J𝑉 Kc = (return 1 ⟫= 𝜆𝑎. (return 2 ⟫= 𝜆𝑏. return(𝑎, 𝑏))) ⟫= 𝜆𝑢. (return 3 ⟫= 𝜆𝑐. return(𝑢, 𝑐))

We would expect the two semantics to relate via J𝑉 Kc = return J𝑉 Kv, but a mere monad structure
will not guarantee it. A monad is a monad structure satisfying:

(return𝑥 ⟫= 𝑓)

left-neutrality
↓
= 𝑓 (𝑥) 𝑃 ⟫= return

right-neutrality
↓
= 𝑃 (𝑃 ⟫= 𝑓) ⟫= 𝑔

associativity
↓
= 𝑃 ⟫= 𝜆𝑥 . (𝑓 (𝑥) ⟫= 𝑔)

As Moggi shows, a monad does guarantee the value and term semantics agree in this way.
The metatheory also uses the monad laws extensively, such as in the following lemma, which

relates substitutions to standard denotations via typing context extension. Denote by 𝛥 ≤ 𝛤 the
statement that (𝑎 : 𝐴) ∈ 𝛤 whenever (𝑎 : 𝐴) ∈ 𝛥; and define 𝛤 \𝛥 by (𝑎 : 𝐴) ∈ 𝛤 \𝛥 iff (𝑎 : 𝐴) ∈ 𝛤
and (𝑎 : 𝐴) ∉ 𝛥. Let Sub𝛥 B

∏
(𝑎:𝐴) ∈𝛥 {𝑉 | · ` 𝑉 : 𝐴} be the set of variable substitutions for 𝛥.

For Θ ∈ Sub𝛥 , denote by Θ𝑀 the standard simultaneous substitution by Θ in𝑀 .

Lemma 6.1 (Substitution Lemma). Assume 𝛤 ` 𝑀 : 𝐴 and let Θ ∈ Sub𝛥 for some 𝛥 ≤ 𝛤 . For all
𝛾 ∈ J𝛤 KT , if ∀(𝑏 : 𝐵) ∈ 𝛥.𝛾𝑏 = JΘ𝑏Kv

T , then J𝑀Kc
T𝛾 = JΘ𝑀Kc

T (𝛾𝑏) (𝑏:𝐵) ∈𝛤\𝛥 .

Using the monad laws hold we can also justify all of the structural transformations. As an ex-
ample, consider Jmatch𝑉 with {true.𝑀 | false.𝑀}Kc = J𝑀Kc. Though𝑀 may use program effects,
the structure of the transformation only makes use of the core calculus constructs, and therefore
can be proven using reasoning at the level of the monad structure and laws, ignoring the traces
underneath.

6.3 Our Semantic Framework
We specialize the monad-based semantics to our case.

Adding the effects. One of the main selling points of Moggi’s approach is its modular support for
extensions with effects. To define the denotations of shared-memory constructs, we extend T with
additional structure, one for each construct: Jstoreℓ,𝑣KT ∈ T1 for assignment,

q
rmwℓ,𝜑 ®𝑣

y
T ∈ TVal

for RMW, and − || |T𝑋,𝑌 − : T𝑋 × T𝑌 → T (𝑋 × 𝑌) for concurrent execution. They then interpret
like so: J𝑀 := 𝑁 Kc𝛾 B J𝑀Kc𝛾 ⟫= 𝜆ℓ. J𝑁 Kc𝛾 ⟫= 𝜆𝑣. Jstoreℓ,𝑣KTq

rmw𝜑 (𝑀 ;𝑁)
yc
𝛾 B J𝑀Kc𝛾 ⟫= 𝜆ℓ. J𝑁 Kc𝛾 ⟫= 𝜆®𝑣 .

q
rmwℓ,𝜑 ®𝑣

y
TJ𝑀 ∥ 𝑁 Kc𝛾 B J𝑀Kc𝛾 | | | J𝑁 Kc𝛾

Trace rewrite rules. The semantics of terms 𝑃 ∈ T𝑋 in trace semantics are given by sets of traces,
representing the possible behaviors, including possible environment interference. As subsets, they
carry a natural inclusion order. We write J𝑀Kc ⊆ J𝑁 Kc to mean containment in every context, that
is ∀𝛾 ∈ J𝛤 K. J𝑀Kc𝛾 ⊆ J𝑁 Kc𝛾 . Intuitively, this means that every behavior of𝑀 is a behavior of 𝑁 .

Particularly, we will be looking at sets of traces closed under certain rewrite rules, a property
that reflects the way in which traces represent possible behaviors. A rewrite rule x is a binary
relation between pre-traces. Its elements, written 𝜏 x−→ 𝜋 , are called x-rewrites from a source 𝜏 to
a target 𝜋 . Let ★ be a set of rewrite rules. We write 𝜏 ★−→ 𝜋 when 𝜏 x−→ 𝜋 for some x ∈ ★. A set
𝑈 ⊆ Trace𝑋 is ★-closed when 𝜏 ∈ 𝑈 and 𝜏 ★−→ 𝜋 ∈ Trace𝑋 implies 𝜋 ∈ 𝑈 . The ★-closure of a set
𝑈 ⊆ Trace𝑋 , denoted 𝑈★, is the least ★-closed superset of 𝑈 . Thus 𝑈 is ★-closed iff 𝑈 = 𝑈★. We
denote the set of countable★-closed subsets of 𝐸 by P★

ctbl (𝐸) B
{
𝑈 ∈ P (𝐸)

�� 𝑈 = 𝑈★
}
. We★-close

a function 𝜙 that returns sets of traces by composition with the closure: 𝜙★ B −★ ◦𝜙 . We say that

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225

A Denotational Approach to Release/Acquire Concurrency 25

Table 1. Summary of all rewrite rules.

𝔤 Loosen 𝛼 𝜉
(
𝜂] {𝜖}

)
𝜔

Ls−−→ 𝛼 𝜉
(
𝜂] {𝜈}

)
𝜔 𝜈 ≤vw 𝜖

Expel 𝛼 𝜉
(
𝜂]

{
𝜖𝜈.ii

})
𝜔

Ex−−→ 𝛼 𝜉
(
𝜂] {𝜈, 𝜖}

)
𝜔 𝜈 ←⊂ 𝜖

Condense 𝛼 𝜉
(
𝜂] {𝜈, 𝜖}

)
𝜔

Cn−−→
(
𝛼 𝜉

(
𝜂] {𝜈}

)
𝜔
)
[↑𝜖] 𝜈 ←⊂= 𝜖

𝔠 Stutter 𝛼 𝜉𝜂 𝜔
St−−→ 𝛼 𝜉 〈𝜇, 𝜇〉 𝜂 𝜔

Mumble 𝛼 𝜉 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂 𝜔 Mu−−−→ 𝛼 𝜉 〈𝜇, 𝜃〉 𝜂 𝜔
Rewind 𝜅 𝜉 𝜔

Rw−−−→ 𝛼 𝜉 𝜔 𝛼 ≤ 𝜅
Forward 𝛼 𝜉 𝜅

Fw−−→ 𝛼 𝜉 𝜔 𝜅 ≤ 𝜔
𝔞 Tighten 𝛼 𝜉 〈𝜇, 𝜌] {𝜈}〉 𝜂] {𝜈} 𝜔 Ti−−→ 𝛼 𝜉 〈𝜇, 𝜌] {𝜖}〉 𝜂] {𝜖} 𝜔 𝜈 ≤vw 𝜖

Absorb 𝛼 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉 𝜂] {𝜈, 𝜖} 𝜔 Ab−−→ 𝛼 𝜉
〈
𝜇, 𝜌]

{
𝜖𝜈.ii

}〉
𝜂]

{
𝜖𝜈.ii

}
𝜔 𝜈 ←⊂ 𝜖

Dilute
(
𝛼 𝜉 〈𝜇, 𝜌] {𝜈}〉 𝜂] {𝜈} 𝜔

)
[↑𝜖] Di−−→ 𝛼 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉 𝜂] {𝜈, 𝜖} 𝜔 𝜈 ←⊂= 𝜖

a function 𝜙 is pointwise★-closed when 𝜙 = 𝜙★. We say that a function 𝜙 between subsets of traces
is ★-closed when its restriction to ★-closed subsets is pointwise closed.

Table 1 summarizes all the rewrite rules we will use. This compact figure packs many side con-
ditions and new notation, which we explain as we present the rules. When presenting a rewrite
rule we omit the return value, because they all maintain it.

Trace monad structure. Given a choice of rewrite rules ★, we define the ★-monad structure as
follows. The set-level function of T ’s monad structure sends every set 𝑋 to a countable ★-closed
sets of 𝑋 -traces: T𝑋 B P★

ctbl (Trace𝑋). The unit yields all single-transition traces that maintain
the view and the memory. The bind appends traces with compatible intermediate views:

returnT𝑋 𝑟 B
{
𝜅 〈𝜇, 𝜇〉 𝜅 ∴ 𝑟 ∈ Trace𝑋

}★
𝑃 ⟫=T𝑋,𝑌 𝑓 B

{
𝛼 𝜉𝜂 𝜔 ∴ 𝑠 ∈ Trace𝑌 | 𝛼 𝜉 𝜅 ∴ 𝑟 ∈ 𝑃 , 𝜅 ≤ 𝜎 , 𝜎 𝜂 𝜔 ∴ 𝑠 ∈ 𝑓 𝑟

}★
Trace concurrent execution. (| | |) interleaves chronicles and pairs the returned values. The delim-

iting views must bound the views of the resulting traces, so we take the greatest lower bound of
the initial views, and the least upper bound of the final views. To define these bounds, denote the
set of views pointing downward into a well-formed memory 𝜇 by − ↩→ 𝜇 B {𝜅 ∈ View | 𝜅 ↩→ 𝜇}.
This set is finite since Loc and 𝜇 are finite, and each 𝜅 mentions only timestamps that appear in
𝜇; and it has a minimum: the view that points to all the initial messages 𝜆ℓ.min 𝜇ℓ .t. Consider a
non-empty 𝑈 ⊆ − ↩→ 𝜇. Since − ↩→ 𝜇 is finite and closed under t, the set 𝑈 has a least upper
bound sup𝜇 𝑈 B

⊔
𝑈 . It also has a greatest lower bound inf𝜇 𝑈 B

⊔ {𝜅 ∈ View |
d
𝑈 ≥ 𝜅 ↩→ 𝜇},

noting
d
𝑈 might not point downward into 𝜇.

Example 6.2. Let 𝜇 be thememory fromExample 5.10. For𝛼1 B ⟪x@5 ; y@7⟫ and𝛼2 B ⟪x@7 ; y@5⟫,
we have 𝛼1 ↩→ 𝜇 and 𝛼2 ↩→ 𝜇, but 𝛼1 u 𝛼2 = ⟪x@5 ; y@5⟫ 6↩→ 𝜇. Here, inf𝜇 {𝛼1, 𝛼2} = ⟪x@0 ; y@0⟫.

Denoting by 𝜉1 ‖ 𝜉2 the set of all the interleavings of 𝜉1 and 𝜉2 that form chronicles, we define:

𝑃1 | | |T 𝑃2 B
{
inf𝜉 .o {𝛼1, 𝛼2} 𝜉 sup𝜉 .c {𝜔1, 𝜔2} ∴ 〈𝑟1, 𝑟2〉 ∈ Trace (𝑋1 × 𝑋2)
| 𝜉 ∈ (𝜉1 ‖ 𝜉2) ∧ ∀ 𝑖 ∈ {1, 2} . 𝛼𝑖 𝜉𝑖 𝜔𝑖 ∴ 𝑟𝑖 ∈ 𝑃𝑖

}★
Trace memory access. Mirroring the operational semantics, we interpret:Jstoreℓ,𝑣KT B {

𝜅 〈𝜇, 𝜇] {ℓ :𝑣@(𝑞, 𝑡]⟪𝜅 [ℓ ↦→ 𝑡]⟫}〉 𝜅 [ℓ ↦→ 𝑡] ∴ 〈〉 ∈ Trace1
}★

Jrmwℓ,ΦKT B q
rmwRO

ℓ,Φ

y
T ∪

q
rmwRMW

ℓ,Φ

y
T where:q

rmwRO
ℓ,Φ

y
T B

{
𝜅 〈𝜇, 𝜇〉 𝜅 ∴ 𝜈.vl ∈ TraceVal

�� Φ (𝜈.vl) = ⊥ ∧ 𝜅 � 𝜈 ∈ 𝜇ℓ
}★

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274

26 Yotam Dvir, Ohad Kammar, and Ori Lahav

q
rmwRMW

ℓ,Φ

y
T B

{
𝜅 〈𝜇, 𝜇] {𝜖}〉 𝜅 [ℓ ↦→ 𝑡] ∴ 𝜈.vl ∈ TraceVal
| 𝜖 = ℓ :Φ (𝜈.vl) @(𝜈.t, 𝑡]⟪𝜅 [ℓ ↦→ 𝑡]⟫ , 𝜅 � 𝜈 ∈ 𝜇ℓ

}★
Requiring the resulting pre-traces to form traces ensures the constraints on their timestamps

and segment hold. Assignment adds a new message. The RMW interpretation adds a new mes-
sage depending on the modifier’s result. Loading is restricted to messages already pointed-to. This
restricted definition relies on the bind (⟫=) to advance the view when concatenating traces.

Monotonicity. To accommodate reasoning about refinement, we require that the trace monad
operators be monotonic with respect to set inclusion:

PRoposition 6.3. Let 𝑃𝑖 , 𝑄𝑖 ∈ G𝑋𝑖 and 𝑓 , 𝑔 : 𝑋1 → G𝑋2. If 𝑃𝑖 ⊆ 𝑄𝑖 and ∀𝑟 ∈ 𝑋1 . 𝑓 𝑟 ⊆ 𝑔𝑟 then:

𝑃1 ⟫= 𝑓 ⊆ 𝑄1 ⟫= 𝑔 𝑃1 | | | 𝑃2 ⊆ 𝑄1 | | | 𝑄2

PRoof. The (−)★ operator is monotonic by virtue of being a closure operator. Thus, it is suf-
ficient to show the containment for the operators as defined before taking the ★-closure, which
follows straightforwardly from the set-definitions, where traces are obtained from traces in the
operands. �

6.4 Generating Denotations
In the degenerate case of the ∅-monad structure, which we call the null model and denote by N ,
neither identity axiom hold, as evidenced by return 𝑟 ⟫= return ≠ return 𝑟 , where only on the left
the traces have two transitions. As merely a monad structure, the induced denotational semantics
is insufficiently abstract. For example, this inequation implies J〈〉 ; 〈〉Kc ≠ J〈〉Kc – this model fails
to satisfy even the most basic semantic equivalences. Still, we will find that we can use less abstract
models as stepping stones to more abstract ones.

We identify a set of rewrite rules 𝔤 B {Ls,Ex,Cn} under which the operations of N are closed.
That is, return is pointwise closed under 𝔤; if 𝑓 is pointwise 𝔤-closed, then ⟫= 𝑓 is 𝔤-closed; and
similarly for the effect operations. We explain how the 𝔤-rewrite maintain this proposition as we
present them. For now, let the generating model be the 𝔤-monad structure, which we denote by G.
So we have:

PRoposition 6.4. For all 𝑃𝑖 ∈ G𝑋𝑖 and 𝑓 : 𝑋1 → G𝑋2:

𝑃1 ⟫=N 𝑓 = 𝑃1 ⟫=G 𝑓 𝑃1 | | |N𝑃2 = 𝑃1 | | |G𝑃2

Moreover, returnN = returnG, Jstoreℓ,𝑣KN = Jstoreℓ,𝑣KG , and Jrmwℓ,ΦKN = Jrmwℓ,ΦKG .
This means that we can calculate in G quite concretely; we need not worry about traces that are

obtained from the set-definitions after some arbitrarily long chain of rewrites. So the connections
we establish later between G and the more abstract monad structures (§7.1) become easier to use.

Remark. The difference between denotations in G and in N lies in the higher-order fragment. For
example, return values of traces in J𝜆𝑓 : 1→ 1. 𝑓 〈〉Kc

T are functions that take as argument elements
in J1K→ T J1K. In particular, the denotation depends on T .

In presenting the 𝔤-rewrite rules below, we provide operational intuition by drawing explicit
connections with interrupted executions. However, this intuition should be taken with a grain of
salt: the abstract model (§6.6) uses these rules as well, where traces do not correspond to inter-
rupted executions as they do here.

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323

A Denotational Approach to Release/Acquire Concurrency 27

x: 𝜈 ′· · · · · ·

y𝑘 : 𝜖𝑘 · · ·· · · 𝛽𝑘 · · ·

y1: 𝜖1 · · ·· · · 𝛽1 · · ·
.
.
. Ls−→

x: 𝜈· · · · · ·

y𝑘 : 𝜖𝑘 · · ·· · · 𝛽𝑘 · · ·

y1: 𝜖1 · · ·· · · 𝛽1 · · ·
.
.
.

x: 𝜈· · · · · ·

y𝑘 : 𝜖𝑘 · · ·· · · 𝛽𝑘 · · ·

y1: 𝜖1 · · ·· · · 𝛽1 · · ·
.
.
. Ti−→

x: 𝜈 ′· · · · · ·

y𝑘 : 𝜖𝑘 · · ·· · · 𝛽𝑘 · · ·

y1: 𝜖1 · · ·· · · 𝛽1 · · ·
.
.
.

Fig. 8. Schematic depictions of the loosen (left) and tighten (right) rewrite rules, focusing on a particular
memory snapshot within the trace, in the setting of 𝑘+1 locations. For every 𝑖 , 𝛽𝑖 and 𝜖𝑖 may dovetail, co-
incide, or be separated. Left: The environment message 𝜈 ′ is “loosened” to 𝜈 . Right: The local message 𝜈 is
“tightened” to 𝜈 ′.

Loosen. When a program relies on a message from the environment, it relies on the message’s
view being small enough, to not obstruct the behavior that follows. In addition, it relies on the
message’s timestamp, which is part of the view, to be big enough for it not to be obscured when
needed. The rule is depicted on the left of Figure 8.

Define the loosen (Ls) rewrite rule:

Assuming 𝜈 ≤vw 𝜖, 𝛼 𝜉
(
𝜂] {𝜖}

)
𝜔

Ls−→ 𝛼 𝜉
(
𝜂] {𝜈}

)
𝜔 (Loosen)

Here, we use the partial order on messages 𝜈 ≤vw 𝜖 defined by requiring that they may only
differ in their timestamps for other memory locations for which 𝜈 ’s must precede 𝜖’s: 𝜈.lc = 𝜖.lc,
𝜈.vl = 𝜖.vl, 𝜈.seg = 𝜖.seg, and 𝜈.vw ≤ 𝜖.vw. If the source in (Loosen) is a trace, then the target is
a trace iff either 𝜂 is empty or 𝜈 ↩→

(
𝜂] {𝜈}

)
.o.

Intuitively, the source behavior can only use the view in 𝜖 by incorporating it into its view and
the view of its local messages using the max (t) operation on views. Since allowing threads to
silently increase their own view does not change the observed behavior, we would still be able
to guarantee the same local messages if the environment message has a smaller view. To make
this intuition more precise, we outline a simulation argument in the case the program exhibits the
source behavior through an interrupted execution that matches the trace exactly.We do not bother
with a formal proof, since the abstract model §6.6 violates this simplifying assumption anyway.

Given an interrupted execution, we can replace an environment message 𝜖 with a message
𝜈 ≤vw 𝜖 and obtain an interrupted execution of the same program. Whenever a thread with view 𝛼
loads 𝜖 via the ReadOnly step in the original interrupted execution, its view becomes𝜔 B 𝛼t𝜖.vw.
In the new interrupted execution, we instead use the Adv rule to compensate for the earlier view in
𝜈 , once for every other location ℓ , and forward the view to themessage at location ℓ with timestamp
𝜔ℓ . Then we are able to load 𝜖 via ReadOnly, since the message has the same timestamp and the
thread’s view at the location 𝜖.lc = 𝜈.lc hasn’t changed during the Adv steps.The RMW-modifier
still fails in the new execution because 𝜈 and 𝜖 hold the same value and the decision whether to
modify it depends only on the value and the parameters, not the view. Loading via the RMW
rule is similar, where the modifier still succeeds with the same modification. We choose the same
timestamp for the newmessage we dovetail to 𝜈 , and it inherits the current view:𝜔 . Steps via other
rules remain the same.

The N operations are Ls-closed since the inclusion of a trace never relies on the view of an
environment message other than its value, segment, and it being dominated by another view:
𝜖.vw ≤ 𝜅. Since 𝜈 ≤vw 𝜖 , the value and segment agree and 𝜈.vw ≤ 𝜖.vw ≤ 𝜅, and so the target
trace will appear in the result of the operation.

Expel. The rewrite expel (Ex) replaces an environment message with two dovetailing messages
that occupy the same segment and have the same view, the latter message also having the same

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372

28 Yotam Dvir, Ohad Kammar, and Ori Lahav

𝑤
𝜖 ′

Ex−−→
𝑣

𝜈
𝑤

𝜖
𝑣

𝜈
𝑤

𝜖

Ab−−→
𝑤

𝜖 ′

Fig. 9. Schematic depictions of the expel (left) and absorb (right) rewrite rules, that focus on the segment
of the dovetailed messages together with all pointers into and out of them, within a particular memory
snapshot. The circular cloud represents the subset of the memory that the messages in focus are pointing
to, showing their views are the same. The elliptical cloud represents views—possibly including the initial and
final view, as well as other messages—that point to each of the dovetailing messages. Thus, no view may
point to 𝜈 . A condition that is not depicted is that all the messages must appear in the same places in the
chronicle. Left: The environment message 𝜈 is “expelled” from the message 𝜖′, which becomes 𝜖 . Right: The
local message 𝜈 is “absorbed” into the message 𝜖 , which becomes 𝜖′.

value, as depicted on the left of Figure 9. This ensures that the value is available at the same times-
tamp with the same carried view, and that no more of the timeline is occupied. Formally:
Assuming 𝜈 ←⊂ 𝜖, 𝛼 𝜉

(
𝜂] {𝜖 [i ↦→ 𝜈.i]}

)
𝜔

Ex−−→ 𝛼 𝜉
(
𝜂] {𝜈, 𝜖}

)
𝜔 (Expel)

Here, 𝜈 ←⊂ 𝜖 is the monotone dovetailing relation, i.e., the two messages dovetail: 𝜈.lc = 𝜖.lc,
𝜈.t = 𝜖.i; and moreover their views compare: 𝜈.vw ≤ 𝜖.vw. The final condition relaxes the rule as
depicted in Figure 9 where the 𝜈.vw = 𝜖.vw was required. This makes no difference to the model,
because the relaxed version is obtained by applying loosen after the strict version, to obtain the
required target.

As was the case for loosen, if the source in (Expel) is a trace, then the target is a trace iff either
𝜂 is empty or 𝜈 ↩→

(
𝜂] {𝜈, 𝜖}

)
.o.

To justify the rule for interrupted executions, suppose 𝜖′ is an environment message in an inter-
rupted execution. By replacing 𝜖′ with 𝜈 and 𝜖 , we obtain another interrupted execution, in which
the environment added these two messages. Throughout the interrupted execution, no view ever
points to 𝜈 , as if 𝜈 was not there.

The operations of N are Ex-closed since they never rely on the absence of messages, only for
the availability of segments, which is preserved by this rule.

Condense. In the condense (Cn) rewrite rule, the source behavior may include an environment
message 𝜖 dovetailing some prior message 𝜈 that carries the same value and view. The target
behavior removes 𝜖 , and modifies 𝜈 to a message 𝜈 ′ that occupies the same segment as the two
messages combined, as depicted on the left of Figure 10.

To formally capture how the views in the trace change in this rule, we define pulling a view 𝜅
along a message 𝜖 to be the view in which, if the timestamp at 𝜖.lc is the initial timestamp of 𝜖 ,
then we update the timestamp to be the final timestamp (depicted on the right):

𝜅 [↑𝜖] B
{
𝜅𝜖.lc = 𝜖.i : 𝜅 [𝜖.lc ↦→ 𝜖.t]
otherwise: 𝜅

𝜅𝜖.lc

↓
(𝜖.i, 𝜖 .t

𝜅 [↑𝜖]𝜖.lc

↓
]

We extend the pulling operation to messages, memories, chronicles, (pre-)traces, and view trees,
by pulling the view associated with these objects. In particular, our representation of messages
means that pulling a dovetailing message preceding 𝜖 along 𝜖 merges them into one contiguous
message.

The rewrite rule, formally:
Assuming 𝜈 ←⊂= 𝜖, 𝛼 𝜉

(
𝜂] {𝜈, 𝜖}

)
𝜔

Cn−−→
(
𝛼 𝜉

(
𝜂] {𝜈}

)
𝜔
)
[↑𝜖] (Condense)

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421

A Denotational Approach to Release/Acquire Concurrency 29

𝑤
𝜈

𝑤
𝜖

Cn−−→

𝑤
𝜈 ′

𝑤
𝜈 ′

Di−−→

𝑤
𝜈

𝑤
𝜖

Fig. 10. Schematic depictions of the condense (left) and dilute (right) rewrite rules, in the style of Figure 9.
A condition that is not depicted is that 𝜈 and 𝜈 ′ must appear in the same places in the chronicle, and 𝜖 may
not appear before them. The views that point to 𝜈 ′ in the source can point either to 𝜈 or to 𝜖 in the target.
Left: The message 𝜈 turns into 𝜈 ′ by “condensing” the environment message 𝜖 . Right: The message 𝜈 ′ turns
into 𝜈 by “diluting” out the local message 𝜖 .

𝑤
𝜈

Cn−−→
𝑤

𝜈 ′

𝑤
𝜈 ′

Di−−→

𝑤
𝜈

Fig. 11. Schematic depictions of the condense (left) and dilute (right) rewrite rules as in Figure 10, focusing
this time on a memory without 𝜖 . Left: Since 𝜖 is to appear as an environment message in the chronicle, it
can appear since the opening memory, not appear even in the closing memory, or somewhere in between.
Right: Since 𝜖 is to appear as a local message, it cannot appear in the opening memory, and must appear in
the closing memory.

Here we use the monotone repetitive dovetailing relation 𝜈 ←⊂= 𝜖 where the two messages dovetail
monotonically: 𝜈 ←⊂ 𝜖 , and have the same value: 𝜈.vl = 𝜖.vl. As was the case for expel, relaxing
the condition that the views must be equal as depicted more strictly in Figure 10 is admissible, this
time by applying loosen before the strict version, to obtain the required source.

The decomposition of the chronicle in the rule determines where 𝜖 first appears, but 𝜈 can first
appear earlier. This situation is depicted in Figure 11.

Unlike loosen and expel, when 𝜂 is empty the target may differ from the source even though
𝜖 , nor any other message, is removed. This is due to Cn pulling views along 𝜖 , whether 𝜖 is there
or not. So when 𝜂 is empty the target differs from the source iff there is a message at 𝜖.i = 𝜈.t.
In this case, assuming the source is a trace, for the target to be a trace 𝜖.seg must be available,
otherwise there will be a memory that is not scattered. If 𝜖.seg is available, then the target will
be a trace, because pulling along a free segment retains the well-formed memory properties. For
example, pointing downwards is preserved due to the following lemma:

Lemma 6.5. ∀𝜖 ∈ Msg∀𝜅, 𝜎 ∈ View. 𝜅𝜖.lc, 𝜎𝜖.lc ∉ 𝜖.seg \ 𝜖.t =⇒ 𝜅 ≤ 𝜎 =⇒ 𝜅 [↑𝜖] ≤ 𝜎 [↑𝜖].

To summarize, if the source in (Condense) is a trace, then the target is a trace iff either 𝜂 is non-
empty, 𝜈.t ∉ 𝜉 .c.t, or 𝜖.seg ∩⋃ 𝜉 .c.seg = ∅.

If we have an interrupted execution with two messages 𝜈 and 𝜖 as in condense, we will also
have an interrupted execution without the environment message 𝜖 , and with 𝜈 ′ instead of 𝜈 . In the
new interrupted execution, 𝜈 ′ is used whenever either 𝜈 or message 𝜖 were used in the original.

The operations of N are Cn-closed. This is harder to demonstrate compared to the previous
rules. Considerations involving the value available to load, and the segment available to store,
are similar. If a message dovetailed with 𝜖 in the source, it dovetails with 𝜈 ′ in the target. Thus,
if a message was added due to an RMW in the source, the condition to dovetail with a message
that holds the loaded value is still met in the target. There are also new considerations involving
the rewrite affecting the entire trace rather than just one or two messages. For instance, to show
that (⟫=) preserves the rule, we replace an application of condense after binding the traces with
applications of condense (with the same messages) on each of the traces before binding. This is

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470

30 Yotam Dvir, Ohad Kammar, and Ori Lahav

subtle because the delimiting views change, and thus the condition imposed on binding the traces
changes from 𝜅 ≤ 𝜎 to 𝜅 [↑𝜖] ≤ 𝜎 [↑𝜖]. The condition still holds due to Lemma 6.5 since neither
𝜅 nor 𝜎 point into the interior of 𝜖.seg, because no message has a timestamp there. This insight
resolves similar subtleties for the other N -constructs.

6.5 Concrete Denotations
Brookes [13] pioneered two rewrite rules to make denotations abstract and support desired pro-
gram transformations: stuttering and mumbling. To define our next model, we adapt these to our
setting, as well as add two additional ones: 𝔠 B {St,Mu, Fw,Rw}. We combine notations of rewrite-
rule sets, e.g. 𝔤𝔠 B 𝔤 ∪ 𝔠. Thus, we denote byM the 𝔤𝔠-monad structure. We call this model the
concrete model because, like the generating model, it still maintains a close correspondence to the
operational semantics RA≤ . However,M is a monad, a crucial element in the proof of the adequacy
theorem (Appendix B.4).

PRoposition 6.6. M is a monad.

Stutter. A program can always make the same memory guarantees on which it relies. This is
captured stutter (St), which inserts a transition with equal components somewhere:

𝛼 𝜉𝜂 𝜔
St−→ 𝛼 𝜉 〈𝜇, 𝜇〉 𝜂 𝜔 (Stutter)

Note that for the target in (Stutter) to form a trace, provided that its source is a trace, we need to
further require that 𝜇 is a well-formed memory, and that 𝛼 points to 𝜇 (which may not be the case
if 𝜉 is empty).

We can also understand stutter using interrupted executions. Given an interrupted execution,
a sequence of 0 steps 〈𝑇, 𝜇〉 , 𝑀 ∗ 〈𝑇, 𝜇〉 , 𝑀 can be inserted anywhere as long as 〈𝑇, 𝜇〉 is well-
formed and 𝜇 contains previous, and is contained in subsequent, memories. This insertion does
not change the initial or the final configurations of the interrupted execution.

As a concrete (contrived) example, stutter is used for validating the transformation 〈〉 ; 〈〉 �
〈〉 ; 〈〉 ; 〈〉. Indeed, it is not true that J〈〉 ; 〈〉Kc

G ⊇ J〈〉 ; 〈〉 ; 〈〉Kc
G , but we do have J〈〉 ; 〈〉Kc

G
{St} ⊇J〈〉 ; 〈〉 ; 〈〉Kc

G .

Mumble. A program can omit a guarantee and rely on that guarantee internally.This is captured
by mumble (Mu), which combines transitions with the same memory at their common edge:

𝛼 𝜉 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂 𝜔 Mu−−→ 𝛼 𝜉 〈𝜇, 𝜃〉 𝜂 𝜔 (Mumble)
If the source in (Mumble) is a trace then so is its target.

We can also understand mumble using interrupted executions. If we have an interrupted exe-
cution of the form ... 〈𝑇, 𝜇〉 , 𝑀 ∗

RA≤ 〈𝑅, 𝜌〉 , 𝑁 〈𝑅, 𝜌〉 , 𝑁 ∗
RA≤ 〈𝐻, 𝜃〉 , 𝐾 ... that is compati-

ble with the source trace, the we clearly have a shorter interrupted execution ... 〈𝑇, 𝜇〉 , 𝑀 ∗
RA≤

〈𝐻, 𝜃〉 , 𝐾 ... that is compatible with the target trace.
As a concrete example, mumble is used for validating the transformation 〈〉 ;𝑀 � 𝑀 . Indeed,

it is not true that J〈〉 ;𝑀Kc
G ⊇ J𝑀Kc

G , because the traces on the left have an additional transition.
However, J〈〉 ;𝑀Kc

G
{Mu} ⊇ J𝑀Kc

G is true, because we can always pick the memory in the transition
from J〈〉Kc

G to match that of J𝑀Kc
G , and then get rid of the transition by using mumble.

Forward. If a program fragment can operate and guarantee a certain set of messages remain
visible, it can operate in the same way and guarantee a subset of these messages remain visible.
The final view serves to guarantee revealed messages to subsequent computation, so we reflect
this fact by forward (Fw), which increases the final view:

Assuming 𝜅 ≤ 𝜔, 𝛼 𝜉 𝜅 Fw−−→ 𝛼 𝜉 𝜔 (Forward)

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519

A Denotational Approach to Release/Acquire Concurrency 31

𝜖· · · · · · 𝜈 · · ·𝛼
Rw−−→ 𝜖 𝜈· · · · · · 𝜈 · · ·𝛼 ′ 𝜈· · · · · · 𝜖 · · · 𝜔

Fw−−→ 𝜈 𝜖· · · · · · 𝜖 · · · 𝜔 ′

Fig. 12. Schematic depictions of the rewind and forward rewrite rule, focusing on a single location, where
the initial/final view points to 𝜈 before and points to 𝜖 after. The messages 𝜈 and 𝜖 may coincide, dovetail, or
be separated. Left: The initial view 𝛼 is “rewound” to 𝛼 ′. Right: The final view 𝜔 is “forwarded” to 𝜔 ′.

The rule is also depicted in Figure 12. Note that for the target in (Forward) to form a trace (rather
than a pre-trace), provided that its source is a trace, we need to further require that 𝜔 ↩→ 𝜉 .c.

We can also understand forward using interrupted executions. If we have an interrupted execu-
tion of the form ... 〈𝑇, 𝜇〉 , 𝑀 ∗

RA≤ 〈𝑅, 𝜌〉 , 𝑁 , we can append Adv steps to the final sequence of
steps to obtain ... 〈𝑇, 𝜇〉 , 𝑀 ∗

RA≤ 〈𝑅
′, 𝜌〉 , 𝑁 , where 𝑅 ≤ 𝑅′ ↩→ 𝜌 .

As a concrete example, St and Fw are used in validating the transformation𝑀 � 𝑀 ; 〈〉. We can
use St to compensate for the transition added by J〈〉Kc

G . However, this is insufficient on its own,
because not only is there an extra transition, it is also possible that the final view from J𝑀Kc

G and
the initial view from J〈〉Kc

G used in the binding are different. To compensate for that we use Fw.

Rewind. If a program fragment can operate by relying on a certain set of visible messages, it
can operate in the same way by relying on a superset of these messages being visible. The initial
view serves to guarantee revealed messages from previous computation, so we reflect this fact by
rewind (Rw), which decreases the initial view:

Assuming 𝛼 ≤ 𝜅, 𝜅 𝜉 𝜔 Rw−−→ 𝛼 𝜉 𝜔 (Rewind)

The rule is also depicted in Figure 12. Note that for the target in (Rewind) to form a trace (rather
than a pre-trace), provided that its source is a trace, we need to further require that 𝛼 ↩→ 𝜉 .o.

We can also understand rewind using interrupted executions, similarly to how we did for for-
ward. Instead of appending Adv steps to the final sequence, we prepend Adv steps to the initial
sequence.

As a concrete example, rewind and stutter are used in validating the transformation𝑀 � 〈〉 ;𝑀 .

6.6 Abstract Denotations
Finally, we define the abstract model, A as the 𝔤𝔠𝔞-monad structure, where 𝔞 B {Ti,Ab,Di} are
rewrite rules, presented below. This model fulfills the basic requirement of a monadic model:

PRoposition 6.7. A is a monad.

By including the additional rewrite rules of 𝔞 we give up the strictly operational interpretation
that we have assumed when presenting the previous rules. This allows us to obtain the abstraction
that the concrete model lacks. We took a parsimonious approach, only proposing rules that we
need to justify program transformations that the RA model is expected to validate. With each
rewrite rule, we present a program transformations whose validation uses that particular rule,
though other 𝔤𝔠-rewrites are often required as well.

Tighten. The role of the view that a message carries, other than providing the timestamp, is to
constrain the loading thread by increasing its view when it loads the message. Considering a local
message 𝜈 , its view serves to guarantee that loading it would not obscure any message within
a certain portion of the memory. Therefore, replacing 𝜈 by 𝜖 that only differs in its view, where
𝜈 ≤vw 𝜖 , as depicted on the right of Figure 8, means that only a sub-portion of the memory is
guaranteed not to become obscured by loading the message, and keeps everything else the same.

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568

32 Yotam Dvir, Ohad Kammar, and Ori Lahav

y

x
-2
|

-1
|

0
|

1
|

-.5
|

.5
|

1.7
|

x:1@(92, 91] ⟪y@1⟫𝜈1 x:2@(9.5, .5] ⟪y@ 3.5 ⟫𝜈 ′2 x:1@(.5, 1.7] ⟪y@3.5⟫𝜈3

y:1@(0, 1] ⟪x@91⟫𝜖1 y:7@(1, 2] ⟪x@91⟫𝜖2 y:3@(3, 3.5] ⟪x@91⟫𝜖3

0
|

1
|

2
|
3
|

3.5
|

〈
x: 1

𝜈1

y:
1

𝜖1
3

𝜖3

𝛼

, x: 1
𝜈1

2
𝜈2

1
𝜈3

y:
1

𝜖1
3

𝜖3

〉〈
x: 1

𝜈1
2

𝜈2
1

𝜈3

y:
1

𝜖1
7

𝜖2
3

𝜖3

, x: 1
𝜈1

2
𝜈2

1
𝜈3

y:
1

𝜖1
7

𝜖2
3

𝜖3

𝜔

〉
∴ 5

Fig. 13. A possible result from rewriting the trace from Figure 1 using tighten. Since 𝜈2 is local in the trace
from Figure 1, tighten can advance its view to point to 𝜖3 instead of 𝜖1. The same replacement is applied
throughout the trace’s sequence, not just the closing memory.

This is the effect of the tighten (Ti) rewrite rule. Formally:
Assuming 𝜈 ≤vw 𝜖, 𝛼 𝜉 〈𝜇, 𝜌] {𝜈}〉 𝜂] {𝜈} 𝜔 Ti−→ 𝛼 𝜉 〈𝜇, 𝜌] {𝜖}〉 𝜂] {𝜖} 𝜔 (Tighten)

See Figure 13 for a concrete example.
As a concrete benefit of tighten, consider the RA-valid (but SC-invalid) write-read-reordering

transformation ℓ :=𝑣 ; let𝑎 = ℓ ′? in𝑎 � let𝑎 = ℓ ′? in ℓ :=𝑣 ;𝑎, where ℓ ≠ ℓ ′. On the right, the added
message carries the view of the thread after it is increased by the view of the loaded message, but,
on the left, the added message carries the initial view of the thread. By applying tighten to traces
of the left, we compensate for this difference.

Absorb. Applying absorb (Ab) removes a local message 𝜈 and decreases the initial timestamp of
a dovetailing local message 𝜖 with the same view, such that the resulting 𝜖′ covers the segment
of 𝜈 . This is depicted on the right of Figure 9. In this way, the rule weakens its memory guarantee
to the environment because it has less messages available to load from, without strengthening
the guarantee by way of making any more of the location’s timeline available. No view can point
to 𝜈 before applying this rule, otherwise the resulting pre-trace would not be a trace. The rule is
formally specified as follows, where we abbreviate by denoting 𝜖𝑡i B 𝜖 [i ↦→ 𝑡]:
Assuming 𝜈 ←⊂ 𝜖, 𝛼 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉 𝜂] {𝜈, 𝜖} 𝜔 Ab−−→ 𝛼 𝜉

〈
𝜇, 𝜌]

{
𝜖𝜈.ii

}〉
𝜂]

{
𝜖𝜈.ii

}
𝜔 (Absorb)

See Figure 14 for a concrete example.
As in expel, we relax the condition that the views must be equal, which tighten can compensate

for.
The transformation ℓ := 𝑤 ; ℓ := 𝑣 � ℓ := 𝑣 is a concrete example where this rule is useful, in

which we use absorb to compensate for the extra message. Specifically, if the local message on the
right is 𝛽 , we pick some 𝑡 from the interior of 𝛽.seg, a trace with a local message due to ℓ := 𝑤
that has the segment (𝛽.i, 𝑡] and a trace with a local message due to ℓ := 𝑢 that has the segment
(𝑡, 𝛽 .t]. After binding, we use mumble to combine the transitions, then absorb to replace these
two messages with 𝛽 .

Dilute. Formally, the dilute (Di) rule is specified as follows:
Assuming 𝜈 ←⊂= 𝜖,

(
𝛼 𝜉 〈𝜇, 𝜌] {𝜈}〉 𝜂] {𝜈} 𝜔

)
[↑𝜖] Di−−→ 𝛼 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉 𝜂] {𝜈, 𝜖} 𝜔 (Dilute)

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617

A Denotational Approach to Release/Acquire Concurrency 33

y

x
-2
|

-1
|

0
|

1
|

-.5
|

.5
|

1.7
|

x:1@(92, 91] ⟪y@1⟫𝜈1 x:2@(9.5, .5] ⟪y@1⟫𝜈2 x:1@(.5, 1.7] ⟪y@3.5⟫𝜈 ′3

y:1@(0, 1] ⟪x@91⟫𝜖1 y:7@(1, 2] ⟪x@91⟫𝜖2 y:3@(3, 3.5] ⟪x@91⟫𝜖3

0
|

1
|

2
|
3
|

3.5
|

〈
x: 1

𝜈1

y:
1

𝜖1
3

𝜖3

𝛼

, x: 1
𝜈1

1
𝜈 ′3

y:
1

𝜖1
3

𝜖3

〉〈
x: 1

𝜈1
1

𝜈 ′3

y:
1

𝜖1
7

𝜖2
3

𝜖3

, x: 1
𝜈1

1
𝜈 ′3

y:
1

𝜖1
7

𝜖2
3

𝜖3

𝜔

〉
∴ 5

Fig. 14. A possible result from rewriting of the trace from Figure 13 using absorb. The dovetailed messages
𝜈2 and 𝜈3 are local in the trace from Figure 1, added within the same transition, so by rewriting by absorb
they can be replaced by 𝜈 ′3 obtained by stretching 𝜈3’s segment to cover 𝜈2’s segment.

y

x
-2
|

-1
|

0
|

1
|

-.5
|

.5
|

1.7
|

x:1@(92, 91] ⟪y@ .5 ⟫𝜈1 x:2@(9.5, .5] ⟪y@ 1 ⟫𝜈2 x:1@(.5, 1.7] ⟪y@3.5⟫𝜈3

y:1@(0, .5] ⟪x@91⟫𝜖 ′1 y:1@(.5, 1] ⟪x@91⟫𝛽 y:7@(1, 2] ⟪x@91⟫𝜖2 y:3@(3, 3.5] ⟪x@91⟫𝜖3

0
|

.5
|

1
|

2
|
3
|

3.5
|

〈
x: 1

𝜈1

y:
1
𝜖 ′1

3
𝜖3

𝛼

, x: 1
𝜈1

2
𝜈2

1
𝜈3

y:
1
𝜖 ′1

1
𝛽

3
𝜖3

〉〈
x: 1

𝜈1
2

𝜈2
1

𝜈3

y:
1
𝜖 ′1

1
𝛽

7
𝜖2

3
𝜖3

, x: 1
𝜈1

2
𝜈2

1
𝜈3

y:
1
𝜖 ′1

1
𝛽

7
𝜖2

3
𝜖3

𝜔

〉
∴ 5

Fig. 15. A possible result from rewriting of the trace from Figure 1 using dilute. Themessage 𝜖1 from Figure 1
was replaced with 𝜖′1, with the same value 1. The local message 𝛽—which takes up the rest of the missing
space left behind by 𝜖1—always appears with 𝜖′1, dovetailingwith it and carrying the same value. Themessage
𝜖2, that used to dovetail with 𝜖1, now dovetails with 𝛽 .

See Figure 15 for a concrete example.
We restrict to the case that 𝜈.vw = 𝜖.vw when explaining the rule. The rest can be seen as a

formal extension which is admissible in the presence of tighten, much like we had with condense
and loosen.

Unpacking this definition, we first note that, although we are focusing on the case where the
source and target are traces, the pre-trace expression 𝜏 ′ B 𝛼 𝜉 〈𝜇, 𝜌] {𝜈}〉 𝜂] {𝜈} 𝜔 within the
source may not be a trace itself. In particular, there could be views in 𝜏 ′ that point to 𝜖 even though
there is nomessage there until the pulling (−) [↑𝜖] takes effect, after which theywill point to 𝜈 [↑𝜖].
There could also be views that point to 𝜈 in 𝜏 ′, which too point to 𝜈 [↑𝜖] in the source. Therefore,
views that point to 𝜈 [↑𝜖] in the source could point to either 𝜈 or 𝜖 in the target—the latter being a
pointer moving. That is, in terms of the memory graph’s structure, we think of 𝜈 [↑𝜖] and 𝜈 being

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666

34 Yotam Dvir, Ohad Kammar, and Ori Lahav

the same vertex labeled differently in the memories before and after the rewrite respectively, with
some pointers moved to the newly added 𝜖-labeled vertex.This is depicted on the right of Figure 10.

Another tricky thing about this rule is that 𝜈 could appear first before 𝜖 , and could be either a
local message or an environment message. This is depicted on the right of Figure 11.

Justifying this rewrite, if the program relies on 𝜈.vl being available at 𝜈 [↑𝜖] .t, it can instead rely
on it being available with 𝜈.t with a view that will impose the same restrictions on the program
once it loads the message and inherits the view; all this, so long as the remainder of the segment
remains unoccupied until it guarantees the same value and the same view there (with 𝜖). Similarly,
if the program guarantees the value with 𝜈 [↑𝜖], it can guarantee it with 𝜈 instead, so long as only
𝜖 can occupy the remaining segment.

As a concrete example of this rule in use, consider the transformation ℓ? � FAA (ℓ, 0). A trace
from the target has amessage 𝜖 added to dovetail with an existingmessage 𝜈 . So there is amatching
trace in the source without that added message. By closure under 𝔤, we can Cn-rewrite the trace,
pulling 𝜈 by 𝜖 (the Cn-rewrite is defined even when pulling by a message that is not there). Then,
we can apply dilute to add 𝜖 .

7 METATHEORY
The difference between the different monads from §6 are due to the abstraction afforded to them by
the rewrite rules under which they are closed. Ultimately, it is the monadA that we are interested
in, as it is the one over which we define satisfactory denotational semantics. To prove the results
that justify this, we first relate the different monads using properties of the rewrites rules and their
interactions (§7.1).

Then, focusing on the denotational semantics of interest, overA, we prove (directional) composi-
tionality (§7.2) and soundness (§7.3). These results, interesting in their own right, are also stepping
stones towards (directional) adequacy (§7.4). Finally, we exhibit the sufficient abstraction of the
denotational semantics with various transformations it supports (§7.5).

7.1 Commutativity of Rewrites
A complicating aspect of these trace models is how intricately rewrites between traces interact.
For example, an application of forwardmay only be possible after adding a transition to the end of
the chronicle with stutter, in which the messages that the final view is intended to point to exist.
So given a rewrite 𝜏 St−→ 𝜋

Fw−−→ 𝜚 , it may not be possible to find any 𝜋 ′ such that 𝜏 Fw−−→ 𝜋 ′
St−→ 𝜚 .

At other times, commuting in this way is guaranteed to be possible. As a relatively simple exam-
ple, an application of loosen can always be made before one of stutter rather than after it. Even if
the message that loosen acts on happens to appear in the transition that stutter adds to the chron-
icle in the sequence 𝜏 St−→ 𝜋

Ls−→ 𝜚 , in the alternative sequence 𝜏 Ls−→ 𝜋 ′
St−→ 𝜚 the transition added

already includes the “loosened” message. It is important to check that the pre-trace 𝜋 ′ is in fact a
trace. Since 𝜏 is a trace, then—other than the trivial case in which 𝜋 ′ is 𝜏 itself—we only need to
check that the “loosened” message points downwards into the memories in which it appears. This
we infer from the fact that every memory in 𝜋 ′ appears in 𝜚 , which is itself a trace.

More generally, every sequence of rewrites can be rearranged such that 𝔤-rewrites appear first,
then 𝔠-rewrites, and finally 𝔞-rewrites. This property will play a pivotal rule in the metatheory,
and it is an immediate consequence of the following lemma. We write x � y when x−→ y−→⊆ y−→ x−→,
where x−→ and y−→ are restricted to traces.

Lemma 7.1 (RewRite Commutativity). If x ∈ 𝔞 and y ∈ 𝔤𝔠, or x ∈ 𝔠𝔞 and y ∈ 𝔤, then x � y.

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715

A Denotational Approach to Release/Acquire Concurrency 35

𝛼 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉
(
𝜂] {𝜈, 𝜖}

) (
𝜂′] {𝜈, 𝜖, 𝜖}

)
𝜔

𝛼 𝜉
〈
𝜇, 𝜌]

{
𝜖𝜈.ii

}〉 (
𝜂]

{
𝜖𝜈.ii

}) (
𝜂′]

{
𝜖𝜈.ii , 𝜖

})
𝜔

(
𝛼 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉

(
𝜂] {𝜈, 𝜖}

) (
𝜂′] {𝜈, 𝜖}

)
𝜔
)
[↑𝜖]

(
𝛼 𝜉

〈
𝜇, 𝜌]

{
𝜖𝜈.ii

}〉 (
𝜂]

{
𝜖𝜈.ii

}) (
𝜂′]

{
𝜖𝜈.ii

})
𝜔
)
[↑𝜖]

Ab
𝜈 ←⊂ 𝜖

Cn
𝜖 ←⊂ 𝜖

Cn

𝜖𝜈.ii ←⊂ 𝜖

𝜈 [↑𝜖] ←⊂ 𝜖 [↑𝜖]
Ab

(
𝛼 𝜉

(
𝜉 ′] {𝜈, 𝜖}

)
〈𝜇] {𝜈, 𝜖}, 𝜌] {𝜈, 𝜖}〉 𝜂] {𝜈, 𝜖} 𝜔

)
[↑𝜖]

𝛼 𝜉
(
𝜉 ′] {𝜈, 𝜖}

)
〈𝜇] {𝜈, 𝜖}, 𝜌] {𝜖, 𝜈, 𝜖}〉 𝜂] {𝜖, 𝜈, 𝜖} 𝜔

((
𝛼 𝜉

(
𝜉 ′] {𝜈}

)
〈𝜇] {𝜈}, 𝜌] {𝜈}〉 𝜂] {𝜈} 𝜔

)
[↑𝜖]

)
[↑𝜖 [↑𝜖]]

(
𝛼 𝜉

(
𝜉 ′] {𝜈}

)
〈𝜇] {𝜈}, 𝜌] {𝜖, 𝜈}〉 𝜂] {𝜖, 𝜈} 𝜔

)
[↑𝜖]

Di
𝜖 ←⊂= 𝜖

Cn
𝜈 [↑𝜖] ←⊂= 𝜖 [↑𝜖]

Cn

𝜈 ←⊂= 𝜖

𝜈 [↑𝜖] ←⊂= 𝜖 [↑𝜖]
Di

Fig. 16. Two cases from the proof of Rewrite Commutativity shown side-by-side, in which “active” messages
overlap.

PRoof. The proof proceeds by case analysis on x and y, each encapsulated in diagram(s) such
as the two in Figure 16. Each diagram shows the assumed rewrite sequence 𝜏 x−→ 𝜋

y−→ 𝜚 on the left,
with the conditions that are known because they were required for the rewrites to be applicable;
and the deduced sequence 𝜏 x−→ 𝜋 ′

y−→ 𝜚 on the right, with the conditions that need to hold for the
rewrites to be applicable. The conditions are enough to show that the rewrite rules apply for pre-
traces, but for the sequence to be valid, we must verify that 𝜋 ′ is a trace. This is done by inferring
from the fact that it was x-rewritten from the trace 𝜏 , and y-rewritten to the trace 𝜋 , using the
conditions we have collected as we presented the rewrite rules.

The cases in Figure 16 are among the more interesting cases in which the activities of x and
y overlap. The left diagram shows a sub-case of Ab � Cn in which the absorbing message (𝜖)
also serves as the condensing message. On the right, a sub-case of Di � Cn in which the diluted
message (𝜖) is also the message that is being condensed. This case is particularly tricky because
the pulls need to be commuted, as in (− [↑𝜖]) [↑𝜖 [↑𝜖]] = (− [↑𝜖]) [↑𝜖 [↑𝜖]].

The entire collection of diagrams is in Appendix D. �

Remark. When defining the rewrite rules, we could have restricted 𝜈 ←⊂ 𝜖 (and similarly 𝜈 ←⊂= 𝜖) to
messages with equal views: 𝜈.vw = 𝜖.vw, resulting in equivalent closures. For example, to apply the
restricted version of absorb, one first applies tighten, which is also an 𝔞-rewrite, to make the views
equal. In fact, we used this slightly simpler presentation in the abridged version of this paper [21] .
However, we would have to make Rewrite Commutativity less granular.
For example, we would not have Di � Ls. Here, it may be the case that we “dilute” an environment

message and then “loosen” it. After commuting, if we only have the restricted version of dilute, we
then need to “tighten” the new local message to recover the resulting trace from the original rewrite
sequence.

As a corollary to Rewrite Commutativity, we can commute 𝔠𝔞-rewrites out of the G-operators:

Lemma 7.2 (DefeRRal of ClosuRe). Let 𝔠 ⊆ ★ ⊆ 𝔠𝔞. For all 𝑃𝑖 ∈ G𝑋𝑖 and 𝑓 : 𝑋1 → G𝑋2:(
𝑃★1 ⟫=

G 𝑓 ★
)★

=
(
𝑃1 ⟫=G 𝑓

)★ (
𝑃★1 | | |G𝑃★2

)★
=
(
𝑃1 | | |G𝑃2

)★
PRoof. In the proof we rely on the fact that every closure in 𝔞 is mirrored in 𝔤. For example,

instead of rewriting some trace 𝜏 ∈ 𝑃1 by Ab and then “binding” it with a trace 𝜋 ∈ 𝑓 (𝜏 .vl), we
can instead mirror its effect by Ex-rewriting 𝜋 to make its messages match 𝜏 ’s, bind those together,
and then use Ab after the bind.

The detailed proof is in Appendix B.1. �

Deferral of Closure also applies to M and A instead of G, since G𝑋 ⊇ M𝑋 ⊇ A𝑋 . Since
calculations in G are relatively simple, this lemma is quite convenient to have.

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764

36 Yotam Dvir, Ohad Kammar, and Ori Lahav

Example 7.3. The associativity laws forM and A are implied by the one for G. To show this
forM, we specialize Deferral of Closure to ★ = 𝔠, and restrict to 𝑃 ∈ M𝑋 , 𝑓 : 𝑋 → M𝑌 , and
𝑔 : 𝑌 →M𝑍 , obtaining:(

𝑃 ⟫=M 𝑓
)
⟫=M 𝑔 =

((
𝑃 ⟫=G 𝑓

)𝔠
⟫=G𝑔

)𝔠
=

((
𝑃 ⟫=G 𝑓

)
⟫=G𝑔

)𝔠
𝑃 ⟫=M

(
𝜆𝑟 . 𝑓 (𝑟) ⟫=M 𝑔

)
=

(
𝑃 ⟫=G

(
𝜆𝑟 . 𝑓 (𝑟) ⟫=G𝑔

)𝔠)𝔠
=

(
𝑃 ⟫=G

(
𝜆𝑟 . 𝑓 (𝑟) ⟫=G𝑔

))𝔠
The same can be repeated for A by specializing to ★ = 𝔠𝔞.

When calculating denotations of terms, we can use Deferral of Closure to similarly delay taking
the closure. For programs specifically, we can delay all the way through, only taking the closure at
the top level. RelatingM to A in this way is a key step in our proof of adequacy. Thus, we state:

Lemma 7.4 (RetRoactive ClosuRe). If𝑀 is a program, then J𝑀Kc = J𝑀Kc
M

𝔞 .

The proof is in Appendix B.3.

7.2 Compositionality
To state compositionality, and later adequacy, we need a few technical concepts involving captur-
ing and capture-avoiding substitution in 𝝀RA and its semantics. We extend 𝝀RA with well-typed
second-order metavariables: these are binding-aware identifiers 𝛤 ` M : 𝐴. Metavariables repre-
sent “holes” into whichwe can slot well-typed terms 𝛤 ` 𝑀 : 𝐴, in an operation calledmetavariable
substitution. When such a metavariable appears in a term, it is accompanied by an explicit value
substitution governing which values to substitute when we slot a term into it. Metavariable sub-
stitution captures the variables of which the metavariables are aware.

Example 7.5. Consider the following metavariable that is aware of a context with two variables:
𝑎 : Loc, 𝑏 : Val ` M : 1. The term ` M[𝑎 ↦→ x, 𝑏 ↦→ 42] : 1 contains this metavariable and no other
variables. Metasubstituting the open term 𝑎 : Loc, 𝑏 : Val ` 𝑎 := 𝑏 for M yields ` x := 42 : 1.

This treatment of metavariables and their substitution is tedious but standard given the binding
structure in the syntax. A (term) context 𝛥 ` Ξ [𝛤 ` − : 𝐴] : 𝐵 is a term of type 𝐵 with variables
from 𝛥 and one meta-variable 𝛤 ` − : 𝐴 of type𝐴 that assumes a binding context 𝛤 . It is a program
context if 𝛥 is empty and 𝐵 = 𝐺 is ground.

The recursive definition of a term’s denotation only uses the denotations of its subterms, so the
semantics is automatically compositional. Abbreviating 𝛤 ` 𝑀 : 𝐴 and 𝛤 ` 𝑁 : 𝐴 into 𝛤 ` 𝑀, 𝑁 : 𝐴:

PRoposition 7.6 (Compositionality). Let 𝛥 ` Ξ [𝛤 ` − : 𝐴] : 𝐵 be a term context and assume
𝛤 ` 𝑀, 𝑁 : 𝐴. If J𝑀Kc = J𝑁 Kc then JΞ [𝑀]Kc = JΞ [𝑁]Kc.

However, we are interested in a directional version of this, dealing not only with set equality
but also with set inclusion. Simply replacing = with ⊆ in Proposition 7.6 results in a false claim.
This is because the language is higher-order, so only a “nested” form of containment holds, which
degenerates to containment when restricted programs:

TheoRem 7.7 (DiRectional Compositionality). Let · ` Ξ [𝛤 ` − : 𝐴] : 𝐺 be a program context
and assume 𝛤 ` 𝑀, 𝑁 : 𝐴. If J𝑀Kc ⊆ J𝑁 Kc then JΞ [𝑀]Kc ⊆ JΞ [𝑁]Kc.

The proof is in Appendix B.2.

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813

A Denotational Approach to Release/Acquire Concurrency 37

7.3 Soundness
A basic part of the correspondence between the denotational and the operational semantics is its
soundness, in the sense that the denotation of a program has traces corresponding to evaluations.
More specifically, program evaluation is reflected in the denotation of the program by a single-
transition trace, using the greatest lower bound of the initial view tree as the initial view:

TheoRem 7.8 (Soundness). For a program𝑀 , if 〈𝑇, 𝜇〉 , 𝑀 ⇓ 𝑉 , then inf𝜇 𝑇 〈𝜇, 𝜇′〉 𝜔 ∴𝑉 ∈ J𝑀Kc

for some 𝜇′ and 𝜔 .

The proof is in Appendix B.3.

7.4 Adequacy
Adequacy uses contextual refinements to formalize how denotations capture behavior within any
context: for 𝛤 ` 𝑀, 𝑁 : 𝐴, we say that 𝑀 contextually refines 𝑁 , denoted 𝛤 ` 𝑀 v 𝑁 : 𝐴,
or 𝑀 v 𝑁 for short, if 〈 ¤𝛼, 𝜇〉 ,Ξ [𝑀] ⇓ 𝑉 =⇒ 〈 ¤𝛼, 𝜇〉 ,Ξ [𝑁] ⇓ 𝑉 for every program context
· ` Ξ [𝛤 ` − : 𝐴] : 𝐺 , initial configuration state 〈 ¤𝛼, 𝜇〉, and value 𝑉 .

TheoRem 7.9 (DiRectional Adeacy). If J𝑀Kc ⊆ J𝑁 Kc then𝑀 v 𝑁 .

The proof begins by examining the tight correspondence between traces in denotations overM
and interrupted executions. Formally, we write 𝑀 :: 𝜏 :: 𝑉 when 𝑀 executes through 𝜏 to 𝑉 : there
is an interrupted execution from 𝑀 to 𝑉 such that 𝜏 .vl = J𝑉 Kv

M , which starts with the view-leaf
labeled by 𝜏 .ivw, passes exactly through the memory transitions of 𝜏 .ch, and ends with the view-
leaf labeled by 𝜏 .fvw. By the Fundamental Lemma, the statement and proof of which we relegate
to Appendix B.4, if 𝜏 ∈ J𝑀Kc

M then there exists an appropriate value 𝑉 such that𝑀 :: 𝜏 :: 𝑉 .
Traces in denotations over A do not enjoy this correspondence, due to the abstract nature of

the model. However, a looser correspondence holds, between denotations of programs to their
evaluations:

Lemma 7.10 (Evaluation Lemma). For a program𝑀 , if 𝛼 〈𝜇, 𝜌〉 𝜔 ∴ 𝑟 ∈ J𝑀Kc then 〈 ¤𝛼, 𝜇〉 , 𝑀 ⇓ 𝑟 .

PRoof. By Retroactive Closure the trace is obtained by 𝔞-rewriting a trace in theM denotation.
We proceed by induction on the length of this sequence. In the base case, we use the Fundamental
Lemma which, for a single-transition trace degenerates to an uninterrupted execution. For the
step, we observe that 𝔞-rewrites preserve evaluation. We leave the details to Appendix B.4. �

The converse of the Evaluation Lemma we already have as a special case of Soundness. These
two, together with Directional Compositionality, give us Directional Adequacy:

PRoof of DiRectional Adeacy. Assume J𝑀Kc ⊆ J𝑁 Kc. Let · ` Ξ [𝛤 ` − : 𝐴] : 𝐺 be a pro-
gram context and assume 〈 ¤𝛼, 𝜇〉 ,Ξ [𝑀] ⇓ 𝑉 . By Soundness, 𝜏 ∈ JΞ [𝑀]Kc for some 𝜏 of the form
𝛼 〈𝜇,−〉 − ∴ 𝑉 . By Directional Compositionality and the assumption, 𝜏 ∈ JΞ [𝑁]Kc. By the Evalu-
ation Lemma, 〈 ¤𝛼, 𝜇〉 ,Ξ [𝑁] ⇓ 𝑉 . �

7.5 Validating Transformations
Using Directional Adequacy, we can validate𝑀 � 𝑁 in our model by showing that J𝑀Kc ⊇ J𝑁 Kc.
This already justifies structural transformations by virtue of using standard denotational semantics,
as mentioned in §6.2. For others, thanks to Deferral of Closure and closure preserving containment,
we can use the G operators instead of the A operators, making calculations simpler.

Figure 3 lists various transformations that we support in this way.The interested reader can find
a more general collection in Appendix C (Table 2) and proofs thereof.

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862

38 Yotam Dvir, Ohad Kammar, and Ori Lahav

The listed memory-access transformations are stated in ground terms, but imply more general
variants. For example,Write-Write Elimination is stated as ℓ :=𝑤 ;ℓ :=𝑣 � ℓ :=𝑣 , fromwhich we can
deduce e.g., 𝜆𝑎 : Loc . 𝑎 :=𝑤 ; 𝑎 := 𝑣 � 𝜆𝑎 : Loc . 𝑎 := 𝑣 . This is a consequence of using the standard
semantics: structural transformations include any pure computations that result in the same value,
and in particular, we can replace the locations and (storable) values with pure computations that
result in them, or program variables of the same type.

All told, we claim that our adequate denotational semantics is sufficiently abstract. This sup-
ports the case that Moggi’s semantic toolkit can successfully scale to handle the intricacies of RA
concurrency by adapting Brookes’s traces.

8 RELATEDWORK AND CONCLUDING REMARKS
Our work follows the approach of Brookes [13] and its extension to higher-order functions us-
ing monads by Benton et al. [6]. Brookes developed a denotational semantics for shared memory
concurrency under standard sequentially consistency [35], and established full abstraction w.r.t. a
language that has a global atomic await instruction that locks the entire memory. The concepts
behind this approach had been used in multiple related developments, e.g. [12, 36, 37, 48]. We hope
that our work that targets RA will pave the way for similar continuations.

Jagadeesan et al. [25] adapted Brookes’s semantics to the x86-TSO memory model [42]. They
showed that for x86-TSO it suffices to include the final store buffer at the end of the trace and add
two additional simple closure rules that emulate non-deterministic propagation of writes from
store buffers to memory, and identify observably equivalent store buffers. The x86-TSO model,
however, is much closer to sequential consistency than RA, which we study in this paper. In partic-
ular, unlike RA, x86-TSO is “multi-copy-atomic” (writes by one thread are made globally visible to
all other threads at the same time) and successful RMWoperations are immediately globally visible.
Additionally, the parallel composition construct in Jagadeesan et al. [25] is rather strong: threads
are forked and joined only when the store buffers are empty. Being non-multi-copy-atomic, RA
requires a more delicate notion of traces and closure rules, but it has more natural meta-theoretic
properties, which one would expect from a programming language concurrency model: sequenc-
ing, a.k.a. thread-inlining, is unsound under x86-TSO [see 25, 33] but sound under RA (see Figure 3).

Burckhardt et al. [14] developed a denotational semantics for hardware weak memory mod-
els (including x86-TSO) following an alternative approach. They represent sequential code blocks
by sequences of operations that the code performs, and close them under certain rewrite rules (re-
orderings and eliminations) that characterize the memory model. This approach does not validates
important optimizations, such as Read-Read Elimination. Moreover, unlike x86-TSO, RA cannot
be characterized by rewrite operations on SC traces [33].

Dodds et al. [19] developed a fully abstract denotational semantics for RA, extended with fences
and non-atomic accesses. Their semantics is based on RA’s declarative (a.k.a. axiomatic) formula-
tion as acyclicity criteria on execution graphs. Roughly speaking, their denotation of code blocks
(that they assume to be sequential) quantifies over all possible context execution graphs and cal-
culates for each context the “happens-before” relation between context actions that is induced by
the block. They further use a finite approximation of these histories to atomically validate refine-
ment in a model checker. While we target RA as well, there are two crucial differences between
our work and Dodds et al. [19]. First, we employ Brookes-style totally ordered traces and use
interleaving-based operational presentation of RA. Second, and more importantly, we strive for
a compositional semantics where denotations of compound programs are defined as functions
of denotations of their constituents, which is not the case for Dodds et al. [19]. Their model can
nonetheless validate transformations by checking them locally without access to the full program.

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911

A Denotational Approach to Release/Acquire Concurrency 39

Others present non-compositional techniques and tools to check refinement under weak mem-
ory models between whole-thread sequential programs that apply for any concurrent context.
Poetzl and Kroening [45] considered the SC-for-DRF model, using locks to avoid races. Their ap-
proach matches source to target by checking that they perform the same state transitions from
lock to subsequent unlock operations and that the source does not allow more data-races. Moris-
set et al. [41] and Chakraborty and Vafeiadis [16] addressed this problem for the C/C++11 model,
of which RA is a central fragment, by implementing matching algorithms between source and
target that validate that all transformations between them have been independently proven to be
safe under C/C++11.

Cho et al. [18] introduced a specialized semantics for sequential programs that can be used for
justifying compiler optimizations under weak memory concurrency. They showed that behavior
refinement under their sequential semantics implies refinement under any (sequential or parallel)
context in the Promising Semantics 2.1 [17]. Their work focuses on optimizations of race-free
accesses that are similar to C11’s “non-atomics” [4, 34]. It cannot be used to establish the soundness
of program transformations that we study in this paper. Adding non-atomics to our model is an
important future work.

Denotational approaches were developed for models much weaker than RA [15, 24, 26, 29, 43]
that allow the infamous Read-Write Reorder and thus, for a high-level programming language, re-
quire addressing the challenge of detecting semantic dependencies between instructions [3].These
approaches are based on summarizingmultiple partial orders between actions that may arise when
a given program is executed under some context. In contrast, we use totally ordered traces by re-
lating to RA’s interleaving operational semantics. In particular, Kavanagh and Brookes [29] use
partial orders, Castellan, Paviotti et al. [15, 43] use event structures, and Jagadeesan et al., Jeffrey
et al. [24, 26] employ “Pomsets with Preconditions” which trades compositionality for supporting
non-multi-copy-atomicity, as in RA. These approaches do not validate certain access eliminations,
nor Irrelevant Load Introduction, which our model validates.

An exciting aspect of our work is the connection between memory models to Moggi’s monadic
approach. For SC, Abadi and Plotkin, Dvir et al. [1, 20] have made an even stronger connection via
algebraic theories [44].These allow to modularly combine shared memory concurrency with other
computational effects. Birkedal et al. [11] develop semantics for a type-and-effect system for SC
memory which they use to enhance compiler optimizations based on assumptions on the context
that come from the type system. We hope to the current work can serve as a basis to extend such
accounts to weaker models.

ACKNOWLEDGMENTS
Supported by the Israel Science Foundation (grant number 814/22) and the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation programme
(grant agreement no. 851811); and by a Royal Society University Research Fellowship and En-
hancement Award.

REFERENCES
[1] Martín Abadi and Gordon Plotkin. 2010. A Model of Cooperative Threads. Log. Methods Comput. Sci. 6, 4 (2010).

https://doi.org/10.2168/LMCS-6(4:2)2010
[2] Alejandro Aguirre, Shin-ya Katsumata, and Satoshi Kura. 2022. Weakest preconditions in fibrations. Mathematical

Structures in Computer Science 32, 4 (2022). https://doi.org/10.1017/S0960129522000330
[3] Mark Batty, Kayvan Memarian, Kyndylan Nienhuis, Jean Pichon-Pharabod, and Peter Sewell. 2015. The Problem of

Programming Language Concurrency Semantics. In ESOP (LNCS, Vol. 9032). Springer. https://doi.org/10.1007/978-3-
662-46669-8_12

, Vol. 1, No. 1, Article . Publication date: April 2024.

https://doi.org/10.2168/LMCS-6(4:2)2010
https://doi.org/10.1017/S0960129522000330
https://doi.org/10.1007/978-3-662-46669-8_12
https://doi.org/10.1007/978-3-662-46669-8_12

WoRK in pRogRess – to be submitted to TOPLAS 2024

1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960

40 Yotam Dvir, Ohad Kammar, and Ori Lahav

[4] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. 2011. Mathematizing C++ concurrency. In
POPL. ACM. https://doi.org/10.1145/1926385.1926394

[5] Nick Benton, Martin Hofmann, and Vivek Nigam. 2014. Abstract effects and proof-relevant logical relations. In POPL.
ACM.

[6] Nick Benton, Martin Hofmann, and Vivek Nigam. 2016. Effect-dependent transformations for concurrent programs.
In PPDP. ACM. https://doi.org/10.1145/2967973.2968602

[7] Nick Benton, John Hughes, and Eugenio Moggi. 2000. Monads and Effects. In APPSEM.
[8] Nick Benton, Andrew Kennedy, Lennart Beringer, and Martin Hofmann. 2007. Relational semantics for effect-based

program transformations with dynamic allocation. In PPDP. ACM.
[9] Nick Benton, Andrew Kennedy, Lennart Beringer, and Martin Hofmann. 2009. Relational semantics for effect-based

program transformations: higher-order store. In PPDP. ACM.
[10] Nick Benton and Benjamin Leperchey. 2005. Relational Reasoning in a Nominal Semantics for Storage. In TLCA.

Springer.
[11] Lars Birkedal, Filip Sieczkowski, and Jacob Thamsborg. 2012. A Concurrent Logical Relation. In CSL (LIPIcs, Vol. 16).

Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.CSL.2012.107
[12] Stephen Brookes. 2007. A semantics for concurrent separation logic. Theor. Comput. Sci. 375, 1-3 (2007). https:

//doi.org/10.1016/j.tcs.2006.12.034
[13] Stephen D. Brookes. 1996. Full Abstraction for a Shared-Variable Parallel Language. Inf. Comput. 127, 2 (1996).

https://doi.org/10.1006/inco.1996.0056
[14] Sebastian Burckhardt, Madanlal Musuvathi, and Vasu Singh. 2010. Verifying Local Transformations on Relaxed Mem-

ory Models. In CC (LNCS, Vol. 6011). Springer. https://doi.org/10.1007/978-3-642-11970-5_7
[15] Simon Castellan. 2016. Weak memory models using event structures. In JFLA. Saint-Malo, France. https://hal.inria.

fr/hal-01333582
[16] Soham Chakraborty and Viktor Vafeiadis. 2016. Validating optimizations of concurrent C/C++ programs. In CGO.

ACM. https://doi.org/10.1145/2854038.2854051
[17] Minki Cho, Sung-Hwan Lee, Chung-Kil Hur, and Ori Lahav. 2021. Modular data-race-freedom guarantees in the

promising semantics. In PLDI. ACM. https://doi.org/10.1145/3453483.3454082
[18] Minki Cho, Sung-Hwan Lee, Dongjae Lee, Chung-Kil Hur, and Ori Lahav. 2022. Sequential reasoning for optimizing

compilers under weak memory concurrency. In PLDI. ACM. https://doi.org/10.1145/3519939.3523718
[19] Mike Dodds, Mark Batty, and Alexey Gotsman. 2018. Compositional Verification of Compiler Optimisations on Re-

laxed Memory. In ESOP (LNCS, Vol. 10801). Springer. https://doi.org/10.1007/978-3-319-89884-1_36
[20] Yotam Dvir, Ohad Kammar, and Ori Lahav. 2022. An Algebraic Theory for Shared-State Concurrency. In APLAS

(LNCS, Vol. 13658). Springer. https://doi.org/10.1007/978-3-031-21037-2_1
[21] Yotam Dvir, Ohad Kammar, and Ori Lahav. 2024. A Denotational Approach to Release/Acquire Concurrency. In ESOP

(LNCS). Springer, 121–149. https://doi.org/10.1007/978-3-031-57267-8_5
[22] Tony Hoare and Stephan van Staden. 2014. The laws of programming unify process calculi. Sci. Comput. Program. 85

(2014). https://doi.org/10.1016/j.scico.2013.08.012
[23] Martin Hofmann. 2008. Correctness of effect-based program transformations. In Formal Logical Methods for System

Security and Correctness. IOS Press.
[24] Radha Jagadeesan, Alan Jeffrey, and James Riely. 2020. Pomsets with preconditions: a simplemodel of relaxedmemory.

Proc. ACM Program. Lang. 4, OOPSLA (2020). https://doi.org/10.1145/3428262
[25] Radha Jagadeesan, Gustavo Petri, and James Riely. 2012. Brookes Is Relaxed, Almost!. In FOSSACS (LNCS, Vol. 7213).

Springer. https://doi.org/10.1007/978-3-642-28729-9_12
[26] Alan Jeffrey, James Riely, Mark Batty, Simon Cooksey, Ilya Kaysin, and Anton Podkopaev. 2022. The leaky semicolon:

compositional semantic dependencies for relaxed-memory concurrency. Proc. ACM Program. Lang. 6, POPL (2022).
https://doi.org/10.1145/3498716

[27] Jan-Oliver Kaiser, Hoang-Hai Dang, Derek Dreyer, Ori Lahav, and Viktor Vafeiadis. 2017. Strong Logic for Weak
Memory: Reasoning About Release-Acquire Consistency in Iris. In 31st European Conference on Object-Oriented Pro-
gramming, ECOOP 2017, June 19-23, 2017, Barcelona, Spain (LIPIcs, Vol. 74). Schloss Dagstuhl - Leibniz-Zentrum für
Informatik. https://doi.org/10.4230/LIPIcs.ECOOP.2017.17

[28] Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek Dreyer. 2017. A promising semantics for
relaxed-memory concurrency. In POPL. ACM. https://doi.org/10.1145/3009837.3009850

[29] Ryan Kavanagh and Stephen Brookes. 2018. A Denotational Semantics for SPARC TSO. In MFPS (ENTCS, Vol. 341).
Elsevier. https://doi.org/10.1016/j.entcs.2018.03.025

[30] Ori Lahav. 2019. Verification under Causally Consistent Shared Memory. ACM SIGLOG News 6, 2 (April 2019).
https://doi.org/10.1145/3326938.3326942

, Vol. 1, No. 1, Article . Publication date: April 2024.

https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1145/2967973.2968602
https://doi.org/10.4230/LIPIcs.CSL.2012.107
https://doi.org/10.1016/j.tcs.2006.12.034
https://doi.org/10.1016/j.tcs.2006.12.034
https://doi.org/10.1006/inco.1996.0056
https://doi.org/10.1007/978-3-642-11970-5_7
https://hal.inria.fr/hal-01333582
https://hal.inria.fr/hal-01333582
https://doi.org/10.1145/2854038.2854051
https://doi.org/10.1145/3453483.3454082
https://doi.org/10.1145/3519939.3523718
https://doi.org/10.1007/978-3-319-89884-1_36
https://doi.org/10.1007/978-3-031-21037-2_1
https://doi.org/10.1007/978-3-031-57267-8_5
https://doi.org/10.1016/j.scico.2013.08.012
https://doi.org/10.1145/3428262
https://doi.org/10.1007/978-3-642-28729-9_12
https://doi.org/10.1145/3498716
https://doi.org/10.4230/LIPIcs.ECOOP.2017.17
https://doi.org/10.1145/3009837.3009850
https://doi.org/10.1016/j.entcs.2018.03.025
https://doi.org/10.1145/3326938.3326942

WoRK in pRogRess – to be submitted to TOPLAS 2024

1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009

A Denotational Approach to Release/Acquire Concurrency 41

[31] Ori Lahav, Nick Giannarakis, and Viktor Vafeiadis. 2016. Taming release-acquire consistency. In POPL. ACM. https:
//doi.org/10.1145/2837614.2837643

[32] Ori Lahav, Egor Namakonov, Jonas Oberhauser, Anton Podkopaev, and Viktor Vafeiadis. 2021. Making weak memory
models fair. Proc. ACM Program. Lang. 5, OOPSLA (2021). https://doi.org/10.1145/3485475

[33] Ori Lahav and Viktor Vafeiadis. 2016. Explaining Relaxed Memory Models with Program Transformations. In FM
(LNCS, Vol. 9995). https://doi.org/10.1007/978-3-319-48989-6_29

[34] Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer. 2017. Repairing sequential consistency
in C/C++11. In PLDI. ACM. https://doi.org/10.1145/3062341.3062352

[35] Leslie Lamport. 1979. How to Make a Multiprocessor Computer That Correctly Executes Multiprocess Programs.
IEEE Trans. Computers 28, 9 (1979). https://doi.org/10.1109/TC.1979.1675439

[36] Hongjin Liang, Xinyu Feng, and Ming Fu. 2012. A rely-guarantee-based simulation for verifying concurrent program
transformations. In POPL. ACM. https://doi.org/10.1145/2103656.2103711

[37] Hongjin Liang, Xinyu Feng, and Ming Fu. 2014. Rely-Guarantee-Based Simulation for Compositional Verification of
Concurrent Program Transformations. ACM Trans. Program. Lang. Syst. 36, 1 (2014). https://doi.org/10.1145/2576235

[38] Kenji Maillard, Cătălin Hriţcu, Exequiel Rivas, and Antoine Van Muylder. 2019. The next 700 Relational Program
Logics. Proc. ACM Program. Lang. 4, POPL, Article 4 (Dec. 2019). https://doi.org/10.1145/3371072

[39] Jeremy Manson, William W. Pugh, and Sarita V. Adve. 2005. The Java memory model. In POPL. ACM. https://doi.
org/10.1145/1040305.1040336

[40] Eugenio Moggi. 1991. Notions of Computation and Monads. Inf. Comput. 93, 1 (1991). https://doi.org/10.1016/0890-
5401(91)90052-4

[41] Robin Morisset, Pankaj Pawan, and Francesco Zappa Nardelli. 2013. Compiler testing via a theory of sound optimi-
sations in the C11/C++11 memory model. In PLDI. ACM. https://doi.org/10.1145/2491956.2491967

[42] Scott Owens, Susmit Sarkar, and Peter Sewell. 2009. A Better x86 Memory Model: x86-TSO. In TPHOLs (LNCS,
Vol. 5674). Springer. https://doi.org/10.1007/978-3-642-03359-9_27

[43] Marco Paviotti, Simon Cooksey, Anouk Paradis, Daniel Wright, Scott Owens, and Mark Batty. 2020. Modular Relaxed
Dependencies in Weak Memory Concurrency. In ESOP (LNCS, Vol. 12075). Springer. https://doi.org/10.1007/978-3-
030-44914-8_22

[44] Gordon Plotkin and John Power. 2002. Notions of Computation Determine Monads. In FOSSACS. Springer Berlin
Heidelberg.

[45] Daniel Poetzl and Daniel Kroening. 2016. Formalizing and CheckingThread Refinement for Data-Race-Free Execution
Models. In TACAS (LNCS, Vol. 9636). Springer. https://doi.org/10.1007/978-3-662-49674-9_30

[46] Christopher Pulte, Shaked Flur, Will Deacon, Jon French, Susmit Sarkar, and Peter Sewell. 2018. Simplifying ARM
concurrency: multicopy-atomic axiomatic and operational models for ARMv8. Proc. ACM Program. Lang. 2, POPL
(2018). https://doi.org/10.1145/3158107

[47] Susmit Sarkar, Peter Sewell, Jade Alglave, Luc Maranget, and Derek Williams. 2011. Understanding POWER multi-
processors. In PLDI. ACM. https://doi.org/10.1145/1993498.1993520

[48] Aaron Joseph Turon and Mitchell Wand. 2011. A separation logic for refining concurrent objects. In POPL. ACM.
https://doi.org/10.1145/1926385.1926415

[49] Viktor Vafeiadis, Thibaut Balabonski, Soham Chakraborty, Robin Morisset, and Francesco Zappa Nardelli. 2015. Com-
mon Compiler Optimisations are Invalid in the C11 Memory Model and what we can do about it. In POPL. ACM.
https://doi.org/10.1145/2676726.2676995

[50] Qiwen Xu, Willem P. de Roever, and Jifeng He. 1997. The Rely-Guarantee Method for Verifying Shared Variable
Concurrent Programs. Formal Aspects Comput. 9, 2 (1997). https://doi.org/10.1007/BF01211617

A OPERATIONAL SEMANTICS PROOFS
A.1 Properties of Memories

PRoof of PRoposition 5.3. By induction on the step. In Adv steps, we retain the simulation. In
the remaining cases, we take the same RA step, which retains the simulation. In the StoRe case,
we store the unique corresponding message that is permissible according to the rule. Other than
the timestamp, the view is determined by the current view tree. In the ReadOnly case, we load
the corresponding message according to the bijection given by the weak simulation relation. The
RMW case is a combination of both of the above. The other cases retains the simulation as they
propagate the state by induction or without change. �

, Vol. 1, No. 1, Article . Publication date: April 2024.

https://doi.org/10.1145/2837614.2837643
https://doi.org/10.1145/2837614.2837643
https://doi.org/10.1145/3485475
https://doi.org/10.1007/978-3-319-48989-6_29
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1145/2103656.2103711
https://doi.org/10.1145/2576235
https://doi.org/10.1145/3371072
https://doi.org/10.1145/1040305.1040336
https://doi.org/10.1145/1040305.1040336
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1145/2491956.2491967
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1007/978-3-030-44914-8_22
https://doi.org/10.1007/978-3-030-44914-8_22
https://doi.org/10.1007/978-3-662-49674-9_30
https://doi.org/10.1145/3158107
https://doi.org/10.1145/1993498.1993520
https://doi.org/10.1145/1926385.1926415
https://doi.org/10.1145/2676726.2676995
https://doi.org/10.1007/BF01211617

WoRK in pRogRess – to be submitted to TOPLAS 2024

2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058

42 Yotam Dvir, Ohad Kammar, and Ori Lahav

PRoof of Lemma 5.8. Let ℓ ′ ∈ Loc. Then {𝜖 ∈ 𝜇ℓ ′ | 𝜅 � 𝜖}.vw = {𝜅}, and so

𝜅ℓ ′ =
(⊔
{𝜖 ∈ 𝜇ℓ ′ | 𝜅 � 𝜖}.vw

)
ℓ ′
≤

(⊔
{𝜖 ∈ 𝜇 | 𝜅 � 𝜖}.vw

)
ℓ ′

Therefore, 𝜅 ≤ ⊔ {𝜖 ∈ 𝜇 | 𝜅 � 𝜖}.vw.
Conversely, since 𝜅 ↩→ 𝜇, if 𝜅 � 𝜖 ∈ 𝜇 then 𝜅 ≥ 𝜖.vw. Thus 𝜅 ≥ ⊔ {𝜖 ∈ 𝜇 | 𝜅 � 𝜖}.vw. �

PRoof of PRoposition 5.9. Item 1 follows from the fact that the memory is downwards point-
ing in the case of a single-edge path. This extends to a path of any length by induction. The other
items are direct consequences of the first. �

PRoof of PRoposition 5.11(1). Since 𝜇 is connected, there exists 𝜖 ∈ 𝜇ℓ such that 𝜈 � 𝜖 . By
Proposition 5.9, (min 𝜇ℓ).t ≥ 𝜖.t. By minimality (min 𝜇ℓ).t = 𝜖.t, and since 𝜇 is scattered, 𝜖 =
min 𝜇ℓ . Thus 𝜈 is on a cycle (with 𝜖). Since 𝜇 is built-up, 𝜈 is minimal. �

PRoof of PRoposition 5.11(2). Since 𝜇 is built-up,min 𝜇ℓ appears in a cycle in 𝜇.gph, and thus
in a cycle of the supergraph 𝜌.gph. Since 𝜌 is built-up, min 𝜇ℓ is minimal in 𝜌 . �

A.2 Properties of View Trees
Only leaves are well-formed for values, being a special case of a single-threaded program:

Lemma A.1. If 𝑇 � 𝑉 then 𝑇 is a leaf, i.e. ∃𝜅 ∈ View.𝑇 = ¤𝜅.

PRoof. The Leaf rule is the only rule in which the term in the conclusion can be a value. �

PRoof of PRoposition 5.13. Let∇1 and∇2 be derivations of𝑇 � 𝑀 . Induction on∇1 shows that
∇1 = ∇2. In every case there is only one applicable derivation rule, and the premises are determined
by the conclusion. To illustrate this point, consider the case of𝑇̂𝑅 � 𝑉𝑁 . The application of 𝜆-L
is ruled-out since 𝑇̂𝑅 � 𝑉 contradicts Lemma A.1.

Since the derivation is unique, an mapping as claimed can be constructed by deconstructing
the term following the derivation. The mapping is injective because the subterms and subtrees in
Node, the only rule with more than one premise, are disjoint. �

A.3 Properties of the Operational Semantics
PRoof of TheoRem 5.15. Preservation of the type is standard. The well-formedness of the state

we show by induction on the step derivation.
The view-tree after the step is well-formed if it is a leaf by the Leaf rule. Otherwise, we use a

corresponding well-formedness rule. For example, for the AppLeft case we use the 𝜆-L rule and
the induction hypothesis; for the PaRInit case we use the Node rule, and satisfy the premises
using the Leaf rule.

That the view-tree points downwards into the memory, and that the memory is well-formed,
are both immediate from the induction hypothesis when there is one. The PaRInit case is also
immediate since neither thememory nor the set of views changes.Thememory also doesn’t change
in the PaRFin case, intowhich the view-leaf after the step points downward since it is the pointwise
maximum of views that do.

For the cases of memory-accessing steps, we also use this fact that pointwise maximum pre-
serves pointing downwards for those steps that load a message. The steps that add a message
change the timestamp by increasing it, therefore preserving pointing downwards with respect to
the other locations. With respect to the location itself, the property holds because the view-leaf
points to the added message which has the same view, and views succeed themselves.Thememory
remains well-formed after adding such a message since the condition on the segment ensures that

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107

A Denotational Approach to Release/Acquire Concurrency 43

the memory remains scattered; the message is not minimal because the timestamp is chosen to
increase; the message is not on a cycle because no other message points to it; and, as we have just
established, its view points downwards, and the views of the other messages point to the same
messages so they too point downwards as they have before the step. �

PRoof of Lemma 5.16. By induction on the step derivation. The congruence cases are all imme-
diate from the induction hypothesis. Of the others, only StoRe and RMW add a message, in which
cases the premises ensure the claim holds. �

PRoof of Lemma 5.17. This property extends from a single step inductively. For a single step,
we proceed by induction on the step derivation.The congruence cases and those that do not change
the view-tree are all immediate from the induction hypothesis. In the memory-accessing steps, the
claim follows from their premises. The cases that change the tree structure, PaRInit and PaRFin,
are trivial to check. �

PRoof of PRoposition 5.18. That 𝛼 ≤ 𝜔 follows from Lemma 5.17. The rest follows by induc-
tion on the number of steps. Indeed, combining our assumption with Lemma 5.16, when a mes-
sage is added there exist 𝛼 ′ ∈ 𝑇 .lf and 𝜔 ′ ∈ 𝑅.lf such that, 𝛼 ≤ 𝛼 ′ ≤ 𝜈.vw ≤ 𝜔 ′ ≤ 𝜔 ′ and
𝛼𝜈.lc ≤ 𝛼 ′𝜈.lc < 𝜈.t. �

B METATHEORY PROOFS
B.1 Proofs for Commutativity
The diagrams for the proof of Rewrite Commutativity are in Appendix D. Below are proofs of other
claims from §7.1.

PRoof of DefeRRal of ClosuRe. Since (−)★ is a closure operator, it is monotonic, so the ⊇
containment follows from the monotonicity of

(
⟫=G

)
and

(
| | |G

)
(Proposition 6.3). Moreover, for

the ⊆ containment, suffice it we show that 𝑃★1 ⟫=
G 𝑓 ★ ⊆

(
𝑃1 ⟫=G 𝑓

)★
and 𝑃★1 | | |

G𝑃★2 ⊆
(
𝑃1 | | |G𝑃2

)★
.

Denote by 𝑃𝑛 the set of traces obtained by ★-rewriting 𝑛 times a trace from 𝑃 , and similarly for
𝑓 𝑛 . So it is sufficient to show that for all 𝑛1, 𝑛2 ∈ N, 𝑃𝑛1

1 ⟫=
G 𝑓 𝑛2 ⊆

(
𝑃1 ⟫=G 𝑓

)★
and 𝑃𝑛1

1 | | |
G𝑃𝑛2

2 ⊆(
𝑃1 | | |G𝑃2

)★
. We show this by induction on 𝑛1 + 𝑛2, where the base case 𝑃1 ⟫=G 𝑓 ⊆

(
𝑃1 ⟫=G 𝑓

)★
and 𝑃1 | | |G𝑃2 ⊆

(
𝑃1 | | |G𝑃2

)★
holds since (−)★ is a closure operator.

For the induction step, the induction hypothesis is that the claim holds for 𝑛1 + 𝑛2 ≤ 𝑚, and we
must show it holds for 𝑛1 + 𝑛2 =𝑚 + 1. So either 𝑛1 = 𝑛′1 + 1 or 𝑛2 = 𝑛′2 + 1. We focus on the claim
for

(
| | |G

)
, since we find that proving the claim for

(
⟫=G

)
to be similar and somewhat easier.

Let 𝜏 ∈ 𝑃𝑛1
1 | | |

G𝑃𝑛2
2 . So 𝜏 = inf𝜉 .o {𝛼1, 𝛼2} 𝜉 𝜔1 t𝜔2 ∴ 〈𝑟1, 𝑟2〉 where 𝜏𝑖 B 𝛼𝑖 𝜉𝑖 𝜔𝑖 ∴ 𝑟𝑖 ∈ 𝑃𝑛𝑖𝑖 and

𝜉 ∈ 𝜉1 ‖ 𝜉2. Assume w.l.o.g. that 𝑛1 = 𝑛′1 + 1. So there is some 𝜏 ′1 ∈ 𝑃
𝑛′1
1 and x ∈ ★ such that 𝜏 ′1

x−→ 𝜏1.
By case analysis on x, we show that there exists 𝜏 ′ ∈ 𝑃𝑛

′
1

1 | | |
G𝑃𝑛2

2 such that 𝜏 ′ ★-rewrites to 𝜏 . By
the induction hypothesis 𝜏 ′ ∈

(
𝑃1 | | |G𝑃2

)★
, and so 𝜏 ∈

(
𝑃1 | | |G𝑃2

)★
.

For the x ∈ ★∩ 𝔠 cases, we construct 𝜏 ′ from 𝜏 ′1 and 𝜏2. The procedure depends on x:
Rw. So 𝜏 ′1 = 𝛼 ′1 𝜉1 𝜔1 ∴ 𝑟1 where 𝛼1 ≤ 𝛼 ′1. We take

𝜏 ′ B inf𝜉 .o
{
𝛼 ′1, 𝛼2

}
𝜉 𝜔1 t 𝜔2 ∴ 〈𝑟1, 𝑟2〉

Since inf𝜉 .o {𝛼1, 𝛼2} ≤ inf𝜉 .o
{
𝛼 ′1, 𝛼2

}
, we have 𝜏 ′ Rw−−→ 𝜏 .

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156

44 Yotam Dvir, Ohad Kammar, and Ori Lahav

Fw. Similar to Rw.
St. So 𝜏 ′1 = 𝛼1 𝜂1𝜂

′
1 𝜔1 ∴ 𝑟1 where 𝜉1 = 𝜂1 〈𝜇, 𝜇〉 𝜂′1. Since 𝜉 ∈ 𝜉1 ‖ 𝜉2, there exist 𝜂, 𝜂′ such that

𝜉 = 𝜂 〈𝜇, 𝜇〉 𝜂′, where 𝜂 includes the transitions from 𝜂1 and 𝜂′ includes the transitions
from 𝜂′1. Formally, there exist 𝜂2, 𝜂′2 such that 𝜉2 = 𝜂2𝜂′2, 𝜂 ∈ 𝜂1 ‖ 𝜂2 and 𝜂′ ∈ 𝜂′1 ‖ 𝜂′2. In
particular, 𝜂𝜂′ ∈ 𝜂1𝜂′1 ‖ 𝜂2𝜂′2 = 𝜂1𝜂′1 ‖ 𝜉2. Denoting 𝜉 ′ B 𝜂𝜂′, we take

𝜏 ′ B inf𝜉 ′ .o {𝛼1, 𝛼2} 𝜉 ′ 𝜔1 t 𝜔2 ∴ 〈𝑟1, 𝑟2〉

We have 𝜉 .o ⊆ 𝜉 ′ .o, so inf𝜉 .o {𝛼1, 𝛼2} ≤ inf𝜉 ′ .o {𝛼1, 𝛼2}. So 𝜏 ′ Rw−−→ 𝜏 ′′, where

𝜏 ′′ B inf𝜉 .o {𝛼1, 𝛼2} 𝜉 ′ 𝜔1 t 𝜔2 ∴ 〈𝑟1, 𝑟2〉

Since 𝜉 = 𝜂 〈𝜇, 𝜇〉 𝜂′, we have 𝜏 ′′ St−→ 𝜏 .
Mu. So 𝜏 ′1 = 𝛼1 𝜂1 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂′1 𝜔1 ∴ 𝑟1 where 𝜉1 = 𝜂1 〈𝜇, 𝜃〉 𝜂′1. Since 𝜉 ∈ 𝜉1 ‖ 𝜉2, there exist

𝜂, 𝜂′ such that 𝜉 = 𝜂 〈𝜇, 𝜃〉 𝜂′, where 𝜂 includes the transitions from 𝜂1 and 𝜂′ includes the
transitions from 𝜂′1. Formally, there exist 𝜂2, 𝜂′2 such that 𝜉2 = 𝜂2𝜂′2, 𝜂 ∈ 𝜂1 ‖ 𝜂2 and 𝜂′ ∈
𝜂′1 ‖ 𝜂′2. In particular, 𝜂 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂′ ∈ 𝜂1 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂′1 ‖ 𝜂2𝜂′2 = 𝜂1 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂′1 ‖ 𝜉2.
Denoting 𝜉 ′ B 𝜂 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂′, we take

𝜏 ′ B inf𝜉 ′ .o {𝛼1, 𝛼2} 𝜉 ′ 𝜔1 t 𝜔2 ∴ 〈𝑟1, 𝑟2〉

Since 𝜉 = 𝜂 〈𝜇, 𝜃〉 𝜂′, and 𝜉 ′ .o = 𝜉 .o and 𝜂′ .o = 𝜂.o, we have 𝜏 ′ Mu−−→ 𝜏 .
For the x ∈ ★∩𝔞 cases, we construct 𝜏 ′ from 𝜏 ′1 and a 𝜏 ′2 defined such that 𝜏2

y−→ 𝜏 ′2 for some y ∈ 𝔤.
By iterating Rewrite Commutativity 𝑛2 times to commute y−→ through the★-rewrite sequence that
resulted in 𝜏2, we find that 𝜏 ′2 ∈ 𝑃

𝑛2
2 . This is because 𝑃2 ∈ G𝑋2. The procedure depends on x:

Ti. So 𝜏 ′1 = 𝛼1 𝜂1 〈𝜇, 𝜌] {𝜈}〉 𝜂′1] {𝜈} 𝜔1∴𝑟1 where 𝜉1 = 𝜂1 〈𝜇, 𝜌] {𝜖}〉 𝜂′1]{𝜖} and 𝜈 ≤vw 𝜖 . Since
𝜉 ∈ 𝜉1 ‖ 𝜉2, there are 𝜂, 𝜂′, 𝜂2, 𝜂′2 such that 𝜉 = 𝜂 〈𝜇, 𝜌] {𝜖}〉 (𝜂′] {𝜖}), 𝜉2 = 𝜂2 (𝜂′2] {𝜖}),
𝜂 ∈ 𝜂1 ‖ 𝜂2 and 𝜂′] {𝜖} ∈ 𝜂′1] {𝜖} ‖ 𝜂′2] {𝜖}. Taking the same order of interleaving,
𝜂′] {𝜈} ∈ 𝜂′1] {𝜈} ‖ 𝜂′2] {𝜈}. Therefore, we have 𝜉 ′ ∈ 𝜉 ′1 ‖ 𝜉 ′2, where

𝜉 ′ B 𝜂 〈𝜇, 𝜌] {𝜈}〉 (𝜂′] {𝜈}), 𝜉 ′1 B 𝜂1 〈𝜇, 𝜌] {𝜈}〉 𝜂′1] {𝜈} , and 𝜉 ′2 B 𝜂2 (𝜂′2] {𝜈})

Define 𝜏 ′2 B 𝛼2 𝜉
′
2 𝜔2 ∴ 𝑟2. Since 𝜏2

Ls−→ 𝜏 ′2, indeed 𝜏 ′2 ∈ 𝑃
𝑛2
2 . We take

𝜏 ′ B inf𝜉 ′ .o {𝛼1, 𝛼2} 𝜉 ′ 𝜔1 t 𝜔2 ∴ 〈𝑟1, 𝑟2〉

Since 𝜉 .o = 𝜉 ′ .o, we have 𝜏 ′ Ti−→ 𝜏 .
Ab. Similar to Ti, using 𝜏2

Ex−−→ 𝜏 ′2.
Di. So 𝜏 ′1 =

(
𝛼1 𝜂1 〈𝜇, 𝜌] {𝜈}〉 𝜂′1] {𝜈} 𝜔1 ∴ 𝑟

)
[↑𝜖], where 𝜉 = 𝜂1 〈𝜇, 𝜌] {𝜈, 𝜖}〉 𝜂′1] {𝜈, 𝜖}. The

reasoning in this case proceeds similarly, using 𝜏2
Cn−−→ 𝜏 ′2 and interleaving 𝜏 ′1 with 𝜏 ′2 to take

𝜏 ′ B inf𝜉 ′ .o {𝛼1 [↑𝜖] , 𝛼2 [↑𝜖]} 𝜉 ′ 𝜔1 [↑𝜖] t 𝜔2 [↑𝜖] ∴ 〈𝑟1, 𝑟2〉
We have 𝜉 .o = 𝜉 ′ .o again too. Moreover, 𝜉 is the chronicle of a trace, and 𝜖 appears in it.
So no view that appears in the trace can point into the interior of 𝜖’s segment. Otherwise,
since view must point to timestamps of messages, we would have a memory that is not
scattered.
We show inf𝜉 .o {𝛼1, 𝛼2} [↑𝜖] ≤ inf𝜉 .o {𝛼1 [↑𝜖] , 𝛼2 [↑𝜖]}. Indeed, for 𝜅 ↩→ 𝜉 .o, assume 𝜅 ≤
𝛼𝑖 . Therefore, 𝜅 [↑𝜖] ≤ 𝛼𝑖 [↑𝜖], and so 𝜅 [↑𝜖] ≤ inf𝜉 .o {𝛼1 [↑𝜖] , 𝛼2 [↑𝜖]}. Thus in particular
for 𝜅 = inf𝜉 .o {𝛼1, 𝛼2}.

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205

A Denotational Approach to Release/Acquire Concurrency 45

By order-comparing (𝜔𝑖)𝜖.lc to 𝜖.i, one also finds that (𝜔1 t 𝜔2) [↑𝜖] = 𝜔1 [↑𝜖] t 𝜔2 [↑𝜖].
And so we obtain 𝜏 ′ Rw−−→ Di−−→ 𝜏 . �

From here on we work to prove Retroactive Closure via logical relation. To compensate for
the rewrite closure being taken at different stages of higher-order constructions, we use a refined
notion of equality.

Egli-Milner lifting. The trace lifting of a relation ∼ ⊆ 𝑋 × 𝑌 is a relation ∼ ⊆ Trace𝑋 × Trace𝑌
defined 𝜏 ∼ 𝜏 ′ B 𝜏 .st = 𝜏 ′ .st ∧ 𝜏 .vl ∼ 𝜏 ′ .vl. This in turn lifts to the Egli-Milner relation
∼ ⊆ P (Trace𝑋) × P (Trace𝑌) where 𝑈 ∼ 𝐸 B ∀𝜏 ∈ 𝑈 ∃ 𝜏 ′ ∈ 𝐸. 𝜏 ∼ 𝜏 ′ ∧ ∀𝜏 ′ ∈ 𝐸 ∃ 𝜏 ∈ 𝑈 . 𝜏 ∼ 𝜏 ′.
We call this last relation the EM-trace lifting of the first relation. We use the same notation for the
relations because we will always be able to infer which relation is meant by the objects related.

Logical relation. For every type 𝐴 we define V†{|𝐴|} ⊆ J𝐴K × J𝐴KM and C†{|𝐴|} ⊆ A J𝐴K ×
MJ𝐴KM by mutual recursion. The definition of V†{|𝐴|} follows the standard “related-inputs to
related-outputs” mantra:

V†{|𝐴→ 𝐵 |} B
{
〈𝑓 , 𝑔〉

�� ∀ 〈𝑟, 𝑠〉 ∈ V†{|𝐴|} . 〈𝑓 𝑟, 𝑔𝑠〉 ∈ C†{|𝐵 |}}
V†{|(𝐴1 ∗ · · · ∗𝐴𝑛) |} B

{
〈〈𝑟1, ... , 𝑟𝑛〉, 〈𝑠1, ... , 𝑠𝑛〉〉

�� ∀ 𝑖 . 〈𝑟𝑖 , 𝑠𝑖〉 ∈ V†{|𝐴𝑖 |}
}

V†{|{𝜄1 of 𝐴1 | · · · | 𝜄𝑛 of 𝐴𝑛} |} B
⋃

𝑖

{
〈𝜄𝑖 𝑟, 𝜄𝑖 𝑠〉

�� 〈𝑟, 𝑠〉 ∈ V†{|𝐴𝑖 |}
}

The relation trivializes on ground types: V†{|𝐺 |} is equality. In particular for 𝑉 ,𝑊 ∈ · ` 𝐺 , if〈J𝑉 Kv, J𝑊 Kv
M
〉
∈ V†{|𝐺 |}, then 𝑉 =𝑊 because as program values, J𝑉 Kv = 𝑉 and J𝑊 Kv

M =𝑊 .
The bespoke C†{|𝐴|} B

{
〈𝑃,𝑄〉

�� 〈𝑃,𝑄𝔞〉 ∈ V†{|𝐴|}
}
uses the EM-trace lifting ofV†{|𝐴|} to relate

abstract denotations to generating denotations by nesting 𝔞-closures.
In regards to open terms, for every typing context 𝛤 we define X†{|𝛤 |} ⊆ J𝛤 K × J𝛤 KM by:

X†{|𝛤 |} B
{
〈𝛾, 𝛿〉

�� ∀(𝑎 : 𝐴) ∈ 𝛤 . 〈𝛾𝑎, 𝛿𝑎〉 ∈ V†{|𝐴|}
}

and define 𝛤 �† 𝑀 : 𝐴 as follows: ∀ 〈𝛾, 𝛿〉 ∈ X†{|𝛤 |} .
〈J𝑀Kc 𝛾, J𝑀Kc

M𝛿
〉
∈ C†{|𝐴|}. We show this

semantic judgment is soundwith respect to the typing relation, following some supportive lemmas.

Lemma B.1. If 〈𝑟, 𝑠〉 ∈ V†{|𝐴|} then
〈
return 𝑟, returnM𝑠

〉
∈ C†{|𝐴|}.

PRoof. For the first half of the EM-trace lifting, let 𝜏 ∈ return 𝑟 =
(
returnM𝑟

)𝔞 , where we
used Rewrite Commutativity to reorder the rewrites. So there exists 𝜋 ∈ returnM𝑟 such that
𝜋

𝔞−→ 𝜏 . Obtain 𝜏 ′, 𝜋 ′ from 𝜏, 𝜋 respectively by replacing their return value 𝑟 with 𝑠 . By construction,
〈𝜏, 𝜏 ′〉 ∈ V†{|𝐴|}. Moreover, 𝜋 ′ ∈ returnM𝑠 . By reusing the rewrite sequence, 𝜋 ′ 𝔞−→ 𝜏 ′. Therefore,
𝜏 ′ ∈

(
returnM𝑠

)𝔞 is a witness as required.
The same idea in reverse shows the second half of the EM-trace lifting. �

Lemma B.2. If 〈𝑃,𝑄〉 ∈ C†{|𝐴|} and 〈𝑓 , 𝑔〉 ∈ V†{|𝐴→ 𝐵 |} then
〈
𝑃 ⟫= 𝑓 ,𝑄 ⟫=M 𝑔

〉
∈ C†{|𝐵 |}.

PRoof. For the first half of the EM-trace lifting, let 𝜏 ∈ 𝑃 ⟫= 𝑓 =
(
𝑃 ⟫=M 𝑓

)𝔞
, where we used

Lemma 7.1 to reorder the rewrites. So there exists 𝜋 ∈ 𝑃 ⟫=M 𝑓 such that 𝜋 𝔞−→ 𝜏 . So there exist
𝛼 𝜉 𝜅 ∴ 𝑟 ∈ 𝑃 and 𝜎 𝜂 𝜔 ∴ 𝑠 ∈ 𝑓 𝑟 where 𝜅 ≤ 𝜎 such that 𝜋 = 𝛼 𝜉𝜂 𝜔 ∴ 𝑠 .

• By the first assumption, there exists 𝑟 ′ such that 〈𝑟, 𝑟 ′〉 ∈ V†{|𝐴|} and 𝛼 𝜉 𝜅 ∴ 𝑟 ′ ∈ 𝑄𝔞 .
• By the second assumption, there exists 𝑠′ such that 〈𝑠, 𝑠′〉 ∈ V†{|𝐵 |} and 𝜎 𝜂 𝜔 ∴ 𝑠′ ∈ (𝑔𝑟 ′)𝔞 .

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254

46 Yotam Dvir, Ohad Kammar, and Ori Lahav

So 𝜋 ′ B 𝛼 𝜉𝜂 𝜔∴ 𝑠′ ∈ 𝑄𝔞 ⟫=M 𝑔𝔞 . Obtain 𝜏 ′ from 𝜏 by replacing its return value 𝑠 by 𝑠′. By reusing
the rewrite sequence, 𝜋 ′ 𝔞−→ 𝜏 ′. By Deferral of Closure, 𝜏 ′ ∈

(
𝑄𝔞 ⟫=M 𝑔𝔞

)𝔞
=
(
𝑄 ⟫=M 𝑔

)𝔞
.

The same idea in reverse shows the second half of the EM-trace lifting. �

Lemma B.3.
〈Jstoreℓ,𝑣K, Jstoreℓ,𝑣KM〉

∈ C†{|1|} and
〈q
rmwℓ,𝜑

y
,
q
rmwℓ,𝜑

y
M
〉
∈ C†{|Val|}.

PRoof. Since 1 and Val are ground types, the sets are equal by Deferral of Closure, reasoning
as in Lemma B.1. �

Lemma B.4. If 〈𝑃𝑖 , 𝑄𝑖〉 ∈ C†{|𝐴𝑖 |} then
〈
𝑃1 | | | 𝑃2, 𝑄1 | | |M𝑄2

〉
∈ C†{|(𝐴1 ∗𝐴2) |}.

PRoof. Similar to Lemma B.2. �

PRoposition B.5. If 𝛤 ` 𝑀 : 𝐴 then 𝛤 �†𝑀 : 𝐴.

PRoof. By induction on the derivation of 𝛤 ` 𝑀 : 𝐴. We detail some paradigmatic examples:
Let 〈𝛾, 𝛿〉 ∈ X†{|𝛤 |}. If 〈𝑟, 𝑠〉 ∈ V†{|𝐴|}, then 〈𝛾 [𝑎 ↦→ 𝑟], 𝛿 [𝑎 ↦→ 𝑠]〉 ∈
X†{|𝛤, 𝑎 : 𝐴|}. By assumption,

〈J𝑀Kc 𝛾 [𝑎 ↦→ 𝑟], J𝑀Kc
M𝛿 [𝑎 ↦→ 𝑠]

〉
∈ C†{|𝐵 |}.

Therefore,
〈
𝜆𝑟 . J𝑀Kc 𝛾 [𝑎 ↦→ 𝑟], 𝜆𝑠. J𝑀Kc

M𝛿 [𝑎 ↦→ 𝑠]
〉
∈ V†{|𝐴→ 𝐵 |}. Ap-

𝛤, 𝑎 : 𝐴 �†𝑀 : 𝐵

𝛤 �†𝜆𝑎 : 𝐴.𝑀 : 𝐴→ 𝐵

plying Lemma B.1,
〈J𝜆𝑎.𝑀Kc 𝛾, J𝜆𝑎. 𝑀Kc

M𝛿
〉
∈ C†{|𝐴→ 𝐵 |}.

Let 〈𝛾, 𝛿〉 ∈ X†{|𝛤 |}. If 〈𝑓 , 𝑔〉 ∈ V†{|𝐴→ 𝐵 |}, then by Lemma B.2
with the first assumption,

〈J𝑀Kc 𝛾 ⟫= 𝑓 , J𝑀Kc
M𝛿 ⟫=

M 𝑔
〉
∈ C†{|𝐵 |}.

Thus
〈
𝜆𝑓 . J𝑀Kc 𝛾 ⟫= 𝑓 , 𝜆𝑔. J𝑀Kc

M𝛿 ⟫=
M 𝑔

〉
∈ V†{|(𝐴→ 𝐵) → 𝐵 |}.

𝛤 �†𝑀 : 𝐴 𝛤 �†𝑁 : 𝐴→ 𝐵

𝛤 �†𝑁𝑀 : 𝐵

So by Lemma B.2 with the second assumption,
〈J𝑁𝑀Kc 𝛾, J𝑁𝑀Kc

M𝛿
〉
∈ C†{|𝐵 |}.

The other cases follow by similar reasoning with Lemmas B.1 and B.2, where in the cases of the
effects we also use the respective Lemmas B.3 and B.4. �

PRoof of RetRoactive ClosuRe. Since𝑀 is a program, by Proposition B.5, · �𝑀 : 𝐺 for some
ground type𝐺 . That is,

〈J𝑀Kc, J𝑀Kc
M
〉
∈ C†{|𝐴|}. Since the EM-trace lifting degenerates to equality

on ground types, J𝑀Kc = J𝑀Kc
M

𝔞 . �

B.2 Proof of Directional Compositionality
We prove Directional Compositionality via logical relation. For this, we use a refinement of the
notion of set-containment.

Hoare lifting. The trace lifting of a relation ∼ ⊆ 𝑋 × 𝑌 is a relation ∼ ⊆ Trace𝑋 × Trace𝑌
defined 𝜏 ∼ 𝜏 ′ B 𝜏 .st = 𝜏 ′ .st ∧ 𝜏 .vl ∼ 𝜏 ′ .vl. This in turn lifts to the Hoare relation ∼ ⊆
P (Trace𝑋) × P (Trace𝑌) where𝑈 ∼ 𝐸 B ∀𝜏 ∈ 𝑈 ∃ 𝜏 ′ ∈ 𝐸. 𝜏 ∼ 𝜏 ′. We call this last relation the H-
trace lifting of the first relation.

Logical relation. For every type𝐴we defineV◦{|𝐴|} ⊆ J𝐴K×J𝐴K and C◦{|𝐴|} ⊆ A J𝐴K×A J𝐴K by
mutual recursion.The definition ofV◦{|𝐴|} follows the standard “related-inputs to related-outputs”
mantra:

V◦{|𝐴→ 𝐵 |} B {〈𝑓 , 𝑔〉 | ∀ 〈𝑟, 𝑠〉 ∈ V◦{|𝐴|} . 〈𝑓 𝑟, 𝑔𝑠〉 ∈ C◦{|𝐵 |}}
V◦{|(𝐴1 ∗ · · · ∗𝐴𝑛) |} B {〈〈𝑟1, ... , 𝑟𝑛〉, 〈𝑠1, ... , 𝑠𝑛〉〉 | ∀ 𝑖 . 〈𝑟𝑖 , 𝑠𝑖〉 ∈ V◦{|𝐴𝑖 |}}

V◦{|{𝜄1 of 𝐴1 | · · · | 𝜄𝑛 of 𝐴𝑛} |} B
⋃

𝑖 {〈𝜄𝑖 𝑟, 𝜄𝑖 𝑠〉 | 〈𝑟, 𝑠〉 ∈ V◦{|𝐴𝑖 |}}
The relation trivializes on ground types: V◦{|𝐺 |} is equality. In particular for 𝑉 ,𝑊 ∈ · ` 𝐺 , if〈J𝑉 Kv, J𝑊 Kv〉 ∈ V◦{|𝐺 |}, then 𝑉 = 𝑊 because as program values, J𝑉 Kv = 𝑉 and J𝑊 Kv = 𝑊 . We

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303

A Denotational Approach to Release/Acquire Concurrency 47

H-trace liftV◦{|𝐴|} to obtain C◦{|𝐴|}. It too trivializes on ground types: C◦{|𝐺 |} is containment. In
regards to open terms, for every typing context 𝛤 we define X◦{|𝛤 |} ⊆ J𝛤 K × J𝛤 K by:

X◦{|𝛤 |} B {〈𝛾, 𝛿〉 | ∀(𝑎 : 𝐴) ∈ 𝛤 . 〈𝛾𝑎, 𝛿𝑎〉 ∈ V◦{|𝐴|}}
and define 𝛤 �◦𝑀 ® 𝑁 : 𝐴 as follows: ∀ 〈𝛾, 𝛿〉 ∈ X◦{|𝛤 |} .

〈J𝑀Kc 𝛾, J𝑁 Kc 𝛿
〉
∈ C◦{|𝐴|}.

As in Appendix B.1, we have the same supportive lemmas for this logical relation. The proofs
are similar, though slightly simpler because there is no need for Lemma 7.2.

Lemma B.6. If 〈𝑟, 𝑠〉 ∈ V◦{|𝐴|} then 〈return 𝑟, return 𝑠〉 ∈ C◦{|𝐴|}.

Lemma B.7. If 〈𝑃,𝑄〉 ∈ C◦{|𝐴|} and 〈𝑓 , 𝑔〉 ∈ V◦{|𝐴→ 𝐵 |} then 〈𝑃 ⟫= 𝑓 ,𝑄 ⟫= 𝑔〉 ∈ C◦{|𝐵 |}.

Lemma B.8.
〈Jstoreℓ,𝑣K, Jstoreℓ,𝑣K〉 ∈ C◦{|1|} and 〈q

rmwℓ,𝜑

y
,
q
rmwℓ,𝜑

y〉
∈ C◦{|Val|}.

Lemma B.9. If 〈𝑃𝑖 , 𝑄𝑖〉 ∈ C◦{|𝐴𝑖 |} then 〈𝑃1 | | | 𝑃2, 𝑄1 | | | 𝑄2〉 ∈ C◦{|(𝐴1 ∗𝐴2) |}.

The judgment is closed under term contexts:

Lemma B.10. For 𝛥 ` Ξ [𝛤 ` − : 𝐴] : 𝐵, if 𝛤 �◦𝑀 ® 𝑁 : 𝐴, then 𝛥 �◦Ξ [𝑀] ® Ξ [𝑁] : 𝐵.

PRoof. By induction on the derivation of 𝛥 ` Ξ [𝛤 ` − : 𝐴] : 𝐵. The metavariable case holds
by assumption. The rest uses the supportive lemmas Lemmas B.6 to B.9 as in the proof of Proposi-
tion B.5. �

PRoposition B.11. If A J𝐴K 3 𝑃 ′ ⊆ 𝑃 and 〈𝑃,𝑄〉 ∈ C◦{|𝐴|} then 〈𝑃 ′, 𝑄〉 ∈ C◦{|𝐴|}.

PRoof. Assuming a statement about all elements of 𝑃 we deduce the same statement about all
elements of 𝑃 ′. �

Lemma B.12. For𝑀, 𝑁 ∈ 𝛤 ` 𝐴, if J𝑀Kc ⊆ J𝑁 Kc then 𝛤 �◦𝑀 ® 𝑁 : 𝐴.

PRoof. Let 〈𝛾, 𝛿〉 ∈ X◦{|𝛤 |}. By Lemma B.10 with 𝑁 itself as the context (the degenerate case
with no metavariable appearance),

〈J𝑁 Kc 𝛾, J𝑁 Kc 𝛿
〉
∈ C◦{|𝐴|}. By assumption, J𝑀Kc 𝛾 ⊆ J𝑁 Kc 𝛾 .

So by Proposition B.11,
〈J𝑀Kc 𝛾, J𝑁 Kc 𝛿

〉
∈ C◦{|𝐴|}. �

PRoof of TheoRem 7.7. By Lemma B.12, 𝛤 �◦𝑀 ® 𝑁 : 𝐴. By Lemma B.10, · �◦Ξ [𝑀] ® Ξ [𝑁] :
𝐺 . That is,

〈JΞ [𝑀]Kc, JΞ [𝑁]Kc〉 ∈ C◦{|𝐺 |}. Since 𝐺 is ground, this degenerates to JΞ [𝑀]Kc ⊆JΞ [𝑁]Kc. �

B.3 Proof of Soundness
To enable optimizations, the abstract model decouples traces far enough from the operational
semantics to make it non-trivial to prove Soundness. To overcome this challenge we use a logical
relation to relate the abstract model to a model which corresponds tightly to the execution steps of
the operational semantics, by tracking the initial view-tree and the memory accesses individually.
Formally, for a set 𝑋 , an 𝑋 -run-trace is an element of VTree ×Mem × Chro × View × 𝑋 , written
𝜏 = 〈𝑇, 𝜇〉 𝜉 𝜔 ∴ 𝑟 , where:

• The run-trace’s chronicle is 𝜏 .ch = 𝜉 . Each transition consists of well-formed memories,
and represents a single memory-accessing step during the interrupted execution; i.e. those
labeled by •. We call such steps loud, and the other step silent; i.e. those labeled by ◦. Re-
spectively, the run-trace is silent if 𝜉 is empty, otherwise it is loud.
• The run-trace’s initial state is 〈𝑇, 𝜇〉. This represents the state from the execution’s initial

configuration, so we require that 𝑇 ↩→ 𝜇. However, the environment may add messages
before the program even starts running, so in the loud case we only require 𝜇 ⊆ 𝜉 .o.

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352

48 Yotam Dvir, Ohad Kammar, and Ori Lahav

• The run-trace’s final view is 𝜏 .fvw = 𝜔 .The corresponding interrupted execution ends with
¤𝜔 . In the silent case we require 𝑇 = ¤𝜔 since silent steps do not change the state.

• The run-trace’s final state is 〈 ¤𝜔, (〈𝜇, 𝜇〉 𝜉).c〉, so we require 𝜔 ↩→ 〈𝜇, 𝜇〉 𝜉 .c. In light of
Lemma 5.17, we require moreover that 𝜅 ≤ 𝜔 for every 𝜅 ∈ 𝑇 .lf, denote by 𝑇 ≤ 𝜔 .
• Considering Lemma 5.16, we require ∀𝜈 ∈ 𝜉 .own∃𝛼 ∈ 𝑇 .lf. 𝛼 ≤ 𝜈.vw ≤ 𝜔 ∧ 𝛼𝜈.lc < 𝜈.t.
• The run-trace’s return value is 𝜏 .ret = 𝑟 . This corresponds to the program value the inter-

rupted execution returns.
We denote the set of 𝑋 -run-traces by OpTrace𝑋 .

We define a monad structure R𝑋 B
〈
R𝑋, returnR, ⟫=R

〉
:

R𝑋 B P (OpTrace𝑋) returnR𝑟 B {〈 ¤𝜅, 𝜇〉 · 𝜅 ∴ 𝑟 }
𝑃 ⟫=R 𝑓 B

{
〈𝑇, 𝜇〉 𝜉𝜂 𝜔 ∴ 𝑠 ∈ R𝑌

�� ∃ 𝑟, 𝜅. 〈𝑇, 𝜇〉 𝜉 𝜅 ∴ 𝑟 ∈ 𝑃 ∧ 〈¤𝜅, (〈𝜇, 𝜇〉 𝜉).c〉 𝜂 𝜔 ∴ 𝑠 ∈ 𝑓 𝑟
}

In the return operator, we make sure that the initial and final states are equal. In the bind operator,
we make sure that the final state of the first run-trace is the initial state of the second run-trace.

PRoposition B.13. R is a monad.

Next we extend R with shared-memory constructs.

Concurrent execution. Consider a program 𝑀 ∥ 𝑁 . Either the state has a leaf ¤𝜅 as its view-tree,
in which case the first step it takes has to be PaRInit, or it has a node as its view tree 𝑇̂𝑅, in
which case the first step it takes cannot be PaRInit. Either way, it then takes some steps due to
steps of𝑀 and 𝑁 (with PaRLeft and PaRRight), then finally it steps with PaRFin to synchronize.

𝑃1 | | |R𝑃2 B
{
〈𝑇, 𝜇〉 𝜉 𝜔1 t 𝜔2 ∴ 〈𝑟1, 𝑟2〉 ∈ R (𝑋1 × 𝑋2) | ∃ 𝜉1, 𝜉2. 𝜉 ∈ 𝜉1 ‖ 𝜉2 ∧ ∃𝑇1,𝑇2 .(
∀𝑖 ∈ {1, 2} . 〈𝑇𝑖 , 𝜇〉 𝜉𝑖 𝜔𝑖 ∴ 𝑟𝑖 ∈ 𝑃𝑖

)
∧
(
𝑇 = 𝑇1̂𝑇2 ∨ ∃𝜅.𝑇 = 𝑇1 = 𝑇2 = ¤𝜅

)}
Memory access. The definitions follow the StoRe, ReadOnly, and RMW rules:Jstoreℓ,𝑣KR B {

〈 ¤𝛼, 𝜇〉 〈𝜌, 𝜌] {ℓ :𝑣@(𝑞, 𝑡]⟪𝛼 [ℓ ↦→ 𝑡]⟫}〉 𝛼 [ℓ ↦→ 𝑡] ∴ 〈〉 ∈ R1
}q

rmwRO
ℓ,Φ

y
R B

{
〈 ¤𝛼, 𝜇〉 〈𝜌, 𝜌〉 𝛼 t 𝜅 ∴ 𝑣 ∈ RVal

�� Φ𝑣 = ⊥, ℓ :𝑣@(−, 𝜅ℓ]⟪𝜅⟫ ∈ 𝜌, 𝛼ℓ ≤ 𝜅ℓ
}

q
rmwRMW

ℓ,Φ

y
R B

{
〈 ¤𝛼, 𝜇〉 〈𝜌, 𝜌] {ℓ :Φ𝑣@(𝜅ℓ , 𝑡]⟪𝜔⟫}〉 𝜔 ∴ 𝑣 ∈ RVal
| 𝜔 = (𝛼 t 𝜅) [ℓ ↦→ 𝑡] , ℓ :𝑣@(−, 𝑡]⟪𝜅⟫ ∈ 𝜌

}
Jrmwℓ,ΦKR B q

rmwRO
ℓ,Φ

y
R ∪

q
rmwRMW

ℓ,Φ

y
R

Some of the premises of the corresponding rules appear as conditions in the set notations, while
other do not appear because they hold implicitly due to the requirements on run-traces.

The importance of a run-trace’s initial memory is in making sense of the initial view-tree, even
if the chronicle is empty. In particular, messages unseen by the initial view-tree are redundant:

Lemma B.14. If 〈𝑇, 𝜇′〉 𝜉 𝜔 ∴ 𝑟 ∈ J𝑀Kc
R and 𝑇 ↩→ 𝜇 ⊆ 𝜇′ then 〈𝑇, 𝜇〉 𝜉 𝜔 ∴ 𝑟 ∈ J𝑀Kc

R .

Single-step soundness. To make the relationship between these denotations and the operational
semantics precise, we can follow an execution backwards, adding a transition for every •-step:

Lemma B.15. Assume 〈𝑇, 𝜇〉 , 𝑀 𝑒
 RA 〈𝑇 ′, 𝜇′〉 , 𝑀 ′ and 〈𝑇 ′, 𝜇′〉 𝜉 𝜔 ∴ 𝑟 ∈ J𝑀 ′Kc

R .

• If 𝑒 = ◦, then 〈𝑇, 𝜇〉 𝜉 𝜔 ∴ 𝑟 ∈ J𝑀Kc
R .

• If 𝑒 = •, then 〈𝑇, 𝜇〉 〈𝜇, 𝜇′〉 𝜉 𝜔 ∴ 𝑟 ∈ J𝑀Kc
R .

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401

A Denotational Approach to Release/Acquire Concurrency 49

PRoof. By induction on the derivation of 〈𝑇, 𝜇〉 , 𝑀 𝑒
 RA 〈𝑇 ′, 𝜇′〉 , 𝑀 ′. Paradigmatic examples

follow:
App Assume 〈 ¤𝜅, 𝜇〉 , (𝜆𝑎. 𝑀)𝑉 ◦

 RA 〈 ¤𝜅, 𝜇〉 , 𝑀 [𝑎 ↦→ 𝑉] and 𝜏 B 〈 ¤𝜅, 𝜇〉 𝜉 𝜔 ∴ 𝑟 ∈ J𝑀 [𝑎 ↦→ 𝑉]Kc
R .

By the Substitution Lemma, J𝑀 [𝑎 ↦→ 𝑉]Kc
R = J(𝜆𝑎.𝑀)𝑉 Kc

R . So indeed 𝜏 ∈ J(𝜆𝑎. 𝑀)𝑉 Kc
R .

PaRLeft Assume
〈
𝑇̂𝑅, 𝜇

〉
, 𝑀 ∥ 𝑁 •

 RA
〈
𝑇 ′̂𝑅, 𝜇′

〉
, 𝑀 ′ ∥ 𝑁 and

〈
𝑇 ′̂𝑅, 𝜇′

〉
𝜉 𝜔 ∴ 〈𝑟, 𝑠〉 ∈J𝑀 ′ ∥ 𝑁 Kc

R . So there exist 𝜉1, 𝜉2 such that 𝜉 ∈ 𝜉1 ‖ 𝜉2, and there exist 𝜔1, 𝜔2 where
𝜔 = 𝜔1 t 𝜔2 such that 〈𝑇 ′, 𝜇′〉 𝜉1 𝜔1 ∴ 𝑟 ∈ J𝑀 ′Kc

R and 〈𝑅, 𝜇′〉 𝜉2 𝜔2 ∴ 𝑠 ∈ J𝑁 Kc
R . In

that latter we can replace 𝜇′ with 𝜇 using Lemma B.14. By the induction hypothesis and
the former, 〈𝑇, 𝜇〉 〈𝜇, 𝜇′〉 𝜉1 𝜔1 ∴ 𝑟 ∈ J𝑀Kc

R . Since 〈𝜇, 𝜇′〉 𝜉 ∈ 〈𝜇, 𝜇′〉 𝜉1 ‖ 𝜉2, we have〈
𝑇̂𝑅, 𝜇

〉
〈𝜇, 𝜇′〉 𝜉 𝜔 ∴ 〈𝑟, 𝑠〉 ∈ J𝑀 ∥ 𝑁 Kc

R . �

We say a chronicle 𝜉 is gapless if 𝜌 = 𝜌 ′ whenever 〈𝜇, 𝜌〉 is followed by 〈𝜌 ′, 𝜃〉 in 𝜉 . Traces that
feature gapless chronicles can be rewritten using Mu to obtain single-transition traces.

PRoposition B.16. If 〈𝑇, 𝜇〉 , 𝑀 ∗
RA 〈 ¤𝜔, 𝜇′〉 ,𝑉 , then 〈𝑇, 𝜇〉 𝜉 𝜔 ∴ J𝑉 Kv

R ∈ J𝑀Kc
R , where 𝜂 =

〈𝜇, 𝜇〉 𝜉 is gapless and 𝜂.c = 𝜇′, i.e. either: (i) 𝜉 is empty and 𝜇 = 𝜇′; or (ii) 𝜉 .o = 𝜇, 𝜉 .c = 𝜇′, and 𝜉
is gapless.

PRoof. By induction on the number of small-steps. Case (i) applies so long as all the steps so
far are silent. Case (ii) applies otherwise. �

Hoare run-lifting. The run-trace lifting of a relation ∼ ⊆ 𝑋 × 𝑌 is a relation ∼ ⊆ OpTrace𝑋 ×
Trace𝑌 defined 𝜏 ∼ 𝜏 ′ B ∃𝑇, 𝜇, 𝜉, 𝜔, 𝑟, 𝑠 . 𝜏 = 〈𝑇, 𝜇〉 𝜉 𝜔 ∴ 𝑟 ∧𝜏 ′ = inf𝜇 𝑇 〈𝜇, 𝜇〉 𝜉 𝜔 ∴ 𝑠 ∧ 𝑟 ∼ 𝑠 . This
in turn lifts to the Hoare relation ∼ ⊆ P (OpTrace𝑋) × P (Trace𝑌) where𝑈 ∼ 𝐸 B ∀𝜏 ∈ 𝑈 ∃ 𝜏 ′ ∈
𝐸. 𝜏 ∼ 𝜏 ′. We call this last relation the H-run-trace lifting of the first relation.

Logical relation. For every type𝐴 we defineV∗{|𝐴|} ⊆ J𝐴KR ×J𝐴K and C∗{|𝐴|} ⊆ RJ𝐴KR ×A J𝐴K
by mutual recursion. The definition ofV∗{|𝐴|} follows the standard “related-inputs to related-out-
puts” mantra, while the bespoke C∗{|𝐴|} part transforms the view tree to its greatest lower bound
using the notation inf𝜇 𝑇 B inf𝜇 𝑇 .lf, and adds a transition for the first memory:

V∗{|𝐴→ 𝐵 |} B {〈𝑓 , 𝑔〉 | ∀ 〈𝑟, 𝑠〉 ∈ V∗{|𝐴|} . 〈𝑓 𝑟, 𝑔𝑠〉 ∈ C∗{|𝐵 |}}
V∗{|(𝐴1 ∗ · · · ∗𝐴𝑛) |} B {〈〈𝑟1, ... , 𝑟𝑛〉, 〈𝑠1, ... , 𝑠𝑛〉〉 | ∀ 𝑖 . 〈𝑟𝑖 , 𝑠𝑖〉 ∈ V∗{|𝐴𝑖 |}}

V∗{|{𝜄1 of 𝐴1 | · · · | 𝜄𝑛 of 𝐴𝑛} |} B
⋃

𝑖 {〈𝜄𝑖 𝑟, 𝜄𝑖 𝑠〉 | 〈𝑟, 𝑠〉 ∈ V∗{|𝐴𝑖 |}}
The relation trivializes on ground types: V∗{|𝐺 |} is equality. In particular for 𝑉 ,𝑊 ∈ · ` 𝐺 , if
〈𝑉 ,𝑊 〉 ∈ V∗{|𝐺 |}, then 𝑉 =𝑊 because as ground-typed values, J𝑉 Kv

R = 𝑉 and J𝑊 Kv =𝑊 . We H-
trace liftV∗{|𝐴|} to obtain C∗{|𝐴|}.

In regards to open terms, for every typing context 𝛤 we define X∗{|𝛤 |} ⊆ J𝛤 KR × J𝛤 K by:
X∗{|𝛤 |} B {〈𝛾, 𝛿〉 | ∀(𝑎 : 𝐴) ∈ 𝛤 . 〈𝛾𝑎, 𝛿𝑎〉 ∈ V∗{|𝐴|}}

and define 𝛤 �∗ 𝑀 : 𝐴 as follows: ∀ 〈𝛾, 𝛿〉 ∈ X∗{|𝛤 |} .
〈J𝑀Kc

R𝛾, J𝑀Kc 𝛿
〉
∈ C∗{|𝐴|}. We show this

semantic judgment is soundwith respect to the typing relation, following some supportive lemmas.

Lemma B.17. If 〈𝑟, 𝑠〉 ∈ V∗{|𝐴|} then
〈
returnR𝑟, return 𝑠

〉
∈ C∗{|𝐴|}.

PRoof. Assume 〈𝑟, 𝑠〉 ∈ V∗{|𝐴|}. W.l.o.g., let 〈 ¤𝜅, 𝜇〉 · 𝜅 ∴ 𝑟 ∈ returnR𝑟 , where 𝜅 ↩→ 𝜇. Note that
𝜅 〈𝜇, 𝜇〉 𝜅 ∴ 𝑠 ∈ return 𝑠 . Trivially, 〈𝜇, 𝜇〉 · = 〈𝜇, 𝜇〉 and inf𝜇 ¤𝜅 = 𝜅. Substituting these, together with
our assumption, we obtain the required precisely:

∀ 〈¤𝜅, 𝜇〉 · 𝜅 ∴ 𝑟 ∈ returnR𝑟 ∃ 𝑠 . inf𝜇 ¤𝜅 〈𝜇, 𝜇〉 · 𝜅 ∴ 𝑠 ∈ return 𝑠 ∧ 〈𝑟, 𝑠〉 ∈ V∗{|𝐴|} �

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450

50 Yotam Dvir, Ohad Kammar, and Ori Lahav

Lemma B.18. If 〈𝑃,𝑄〉 ∈ C∗{|𝐴|} and 〈𝑓 , 𝑔〉 ∈ V∗{|𝐴→ 𝐵 |} then
〈
𝑃 ⟫=R 𝑓 ,𝑄 ⟫= 𝑔

〉
∈ C∗{|𝐵 |}.

PRoof. Assume 〈𝑃,𝑄〉 ∈ C∗{|𝐴|} and 〈𝑓 , 𝑔〉 ∈ V∗{|𝐴→ 𝐵 |}. Let 〈𝑇, 𝜇〉 𝜉𝜂 𝜔 ∴ 𝑟 ′ ∈ 𝑃 ⟫=R 𝑓 . So
there exist 𝑟 and 𝜅 such that 〈𝑇, 𝜇〉 𝜉 𝜅 ∴ 𝑟 ∈ 𝑃 and 〈 ¤𝜅, (〈𝜇, 𝜇〉 𝜉).c〉 𝜂 𝜔 ∴ 𝑟 ′ ∈ 𝑓 𝑟 .

By the first assumption there exists an 𝑠 such that inf𝜇 𝑇 〈𝜇, 𝜇〉 𝜉 𝜅 ∴ 𝑠 ∈ 𝑄 and 〈𝑟, 𝑠〉 ∈ V∗{|𝐴|}.
Using the second assumption we find that 〈𝑓 𝑟, 𝑔𝑠〉 ∈ C∗{|𝐵 |}. In particular, there exists an 𝑠′ such
that 𝜅 〈(〈𝜇, 𝜇〉 𝜉).c, (〈𝜇, 𝜇〉 𝜉).c〉 𝜂 𝜔 ∴ 𝑠′ ∈ 𝑔𝑠 and 〈𝑟 ′, 𝑠′〉 ∈ V∗{|𝐵 |}. So we have

inf𝜇 𝑇 〈𝜇, 𝜇〉 𝜉 〈(〈𝜇, 𝜇〉 𝜉).c, (〈𝜇, 𝜇〉 𝜉).c〉 𝜂 𝜔 ∴ 𝑠′ ∈ 𝑄 ⟫= 𝑔
By using Mu, we have the required inf𝜇 𝑇 〈𝜇, 𝜇〉 𝜉𝜂 𝜔 ∴ 𝑠′ ∈ 𝑄 ⟫= 𝑔. �

Lemma B.19.
〈Jstoreℓ,𝑣KR, Jstoreℓ,𝑣K〉 ∈ C∗{|1|} and 〈q

rmwℓ,𝜑

y
R,

q
rmwℓ,𝜑

y〉
∈ C∗{|Val|}.

PRoof. Using St to compensate for the additional transition from the initial memory, and Rw
to compensate for the view not necessarily already pointing to the loaded message. �

Lemma B.20. If 〈𝑃𝑖 , 𝑄𝑖〉 ∈ C∗{|𝐴𝑖 |} then 〈𝑃1 | | | 𝑃2, 𝑄1 | | | 𝑄2〉 ∈ C∗{|(𝐴1 ∗𝐴2) |}.

PRoof. Assume 〈𝑃𝑖 , 𝑄𝑖〉 ∈ C∗{|𝐴𝑖 |}, and let 𝜏 ∈ 𝑃1 | | | 𝑃2. We proceed by case analysis depending
on whether the initial view tree is a leaf:
Leaf. W.l.o.g., 𝜏 = 〈 ¤𝜅, 𝜇〉 𝜉 𝜔1 t 𝜔2 ∴ 〈𝑟1, 𝑟2〉, where 〈 ¤𝜅, 𝜇〉 𝜉𝑖 𝜔𝑖 ∴ 𝑟𝑖 ∈ 𝑃𝑖 and 𝜉 ∈ 𝜉1 ‖ 𝜉2.

So there exist 𝑠𝑖 such that 𝜅 〈𝜇, 𝜇〉 𝜉𝑖 𝜔𝑖 ∴ 𝑠𝑖 ∈ 𝑄𝑖 and 〈𝑟𝑖 , 𝑠𝑖〉 ∈ V∗{|𝐴𝑖 |}. By definition,
𝜅 〈𝜇, 𝜇〉 〈𝜇, 𝜇〉 𝜉 𝜔1t𝜔2∴ 〈𝑠1, 𝑠2〉 ∈ 𝑄1 | | |G𝑄2. Using Mu we have𝜅 〈𝜇, 𝜇〉 𝜉 𝜔1t𝜔2∴ 〈𝑠1, 𝑠2〉 ∈
𝑄1 | | | 𝑄2. Since 〈〈𝑟1, 𝑟2〉, 〈𝑠1, 𝑠2〉〉 ∈ V∗{|(𝐴1 ∗𝐴2) |}, we are done.

Node. W.l.o.g., 𝜏 =
〈
𝑇1̂𝑇2, 𝜇〉 𝜉 𝜔1 t 𝜔2 ∴ 〈𝑟1, 𝑟2〉, where 〈𝑇𝑖 , 𝜇〉 𝜉𝑖 𝜔𝑖 ∴ 𝑟𝑖 ∈ 𝑃𝑖 and 𝜉 ∈ 𝜉1 ‖ 𝜉2.

So there exist 𝑠𝑖 such that inf𝜇 𝑇𝑖 〈𝜇, 𝜇〉 𝜉𝑖 𝜔𝑖 ∴ 𝑠𝑖 ∈ 𝑄𝑖 and 〈𝑟𝑖 , 𝑠𝑖〉 ∈ V∗{|𝐴𝑖 |}. Rudimentarily,
inf𝜇

{
inf𝜇 𝑇1, inf𝜇 𝑇2

}
= inf𝜇

(
𝑇1̂𝑇2) , so inf𝜇

(
𝑇1̂𝑇2) 〈𝜇, 𝜇〉 〈𝜇, 𝜇〉 𝜉 𝜔1 t 𝜔2 ∴ 〈𝑠1, 𝑠2〉 ∈

𝑄1 | | |G𝑄2. The rest is like before. �

PRoposition B.21. If 𝛤 ` 𝑀 : 𝐴 then 𝛤 �∗𝑀 : 𝐴.

PRoof. By induction on the derivation of 𝛤 ` 𝑀 : 𝐴. We detail some paradigmatic examples:
Let 〈𝛾, 𝛿〉 ∈ X∗{|𝛤 |}. We have J𝜆𝑎. 𝑀Kc

R𝛾 = returnR𝜆𝑟 . J𝑀Kc
R𝛾 [𝑎 ↦→ 𝑟]

and J𝜆𝑎.𝑀Kc 𝛿 = return 𝜆𝑠. J𝑀Kc 𝛿 [𝑎 ↦→ 𝑠] by definition. By LemmaB.17
and the definition of V∗{|𝐴→ 𝐵 |}, it suffices to show that if 〈𝑟, 𝑠〉 ∈

𝛤, 𝑎 : 𝐴 �∗𝑀 : 𝐵

𝛤 �∗𝜆𝑎 : 𝐴.𝑀 : 𝐴→ 𝐵

V∗{|𝐴|}, then
〈J𝑀Kc

R𝛾 [𝑎 ↦→ 𝑟], J𝑀Kc 𝛿 [𝑎 ↦→ 𝑠]
〉
∈ C∗{|𝐵 |}, which is implied by the induction hy-

pothesis.
Let 〈𝛾, 𝛿〉 ∈ X∗{|𝛤 |}. By definition, J𝑁𝑀Kc

R𝛾 = J𝑁 Kc
R𝛾 ⟫=

R

𝜆𝑓 . J𝑀Kc
R𝛾 ⟫=

R 𝑓 , and J𝑁𝑀Kc 𝛿 = J𝑁 Kc 𝛿 ⟫= 𝜆𝑔. J𝑀Kc 𝛿 ⟫= 𝑔.
By the first induction hypothesis,

〈J𝑀Kc
R𝛾, J𝑀Kc 𝛿

〉
∈ C∗{|𝐴|}. So

𝛤 �∗𝑀 : 𝐴 𝛤 �∗𝑁 : 𝐴→ 𝐵

𝛤 �∗𝑁𝑀 : 𝐵

by Lemma B.18, if 〈𝑓 , 𝑔〉 ∈ V∗{|𝐴→ 𝐵 |} then
〈J𝑀Kc

R𝛾 ⟫=
R 𝑓 , J𝑀Kc 𝛿 ⟫= 𝑔

〉
∈ C∗{|𝐵 |}. But this is

exactly the definition of
〈
𝜆𝑓 . J𝑀Kc

R𝛾 ⟫=
R 𝑓 , 𝜆𝑔. J𝑀Kc 𝛿 ⟫= 𝑔

〉
∈ V∗{|(𝐴→ 𝐵) → 𝐵 |}.

By the second induction hypothesis,
〈J𝑁 Kc

R𝛾, J𝑁 Kc 𝛿
〉
∈ C∗{|𝐴→ 𝐵 |}. Using Lemma B.18 again,

we have
〈J𝑁 Kc

R𝛾 ⟫=
R 𝜆𝑓 . J𝑀Kc

R𝛾 ⟫=
R 𝑓 , J𝑁 Kc 𝛿 ⟫= 𝜆𝑔. J𝑀Kc 𝛿 ⟫= 𝑔

〉
∈ C∗{|𝐵 |}, as required.

The other cases follow by similar reasoning with Lemmas B.17 and B.18, where in the cases of
the effects we also use the respective Lemmas B.19 and B.20. �

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499

A Denotational Approach to Release/Acquire Concurrency 51

The proof of soundness concludes by using Propositions B.16 and B.21:

PRoof of Soundness. We have 〈𝑇, 𝜇〉 𝜉 𝜔∴𝑉 ∈ J𝑀Kc
R by Proposition B.16 since𝑀 is of ground

type. Therefore, Proposition B.21 implies that inf𝜇 𝑇 〈𝜇, 𝜇〉 𝜉 𝜔 ∴ 𝑉 ∈ J𝑀Kc. Thanks to the extra
conclusions of Proposition B.16, inf𝜇 𝑇 〈𝜇, 𝜇′〉 𝜔 ∴ 𝑉 ∈ J𝑀Kc by iteratively Mu-rewriting. �

B.4 Proof of Adequacy
The proof of adequacy starts with the Fundamental Lemma, stating that M-traces correspond
to interrupted executions. The main reason behind this fact is simple: 𝔠-rewrites preserve this
correspondence. That is:

Lemma B.22. If𝑀 :: 𝜏 :: 𝑉 and 𝜏 x−→ 𝜋 for x ∈ 𝔠, then𝑀 :: 𝜋 :: 𝑉 .

PRoof. We split to the different x ∈ 𝔠 cases:
St Add a transition that doesn’t change the configuration.
Mu Meld adjacent transitions with equal configurations at the boundary.
Fw Append an Adv step to the final transition.
Rw Prepend an Adv step to the initial transition. �

Logical relation. We mutually define, indexed over type 𝐴, sets V{|𝐴|} of closed values of type
𝐴 and sets C{|𝐴|} of closed terms of type 𝐴:

V{|𝐴→ 𝐵 |} B {𝜆𝑎.𝑀 | ∀𝑉 ∈ V{|𝐴|} . 𝑀 [𝑎 ↦→ 𝑉] ∈ C{|𝐵 |}}
V{|(𝐴1 ∗ · · · ∗𝐴𝑛) |} B {〈𝑉1, ... ,𝑉𝑛〉 | ∀𝑖 .𝑉𝑖 ∈ V{|𝐴𝑖 |}}

V{|{𝜄1 of 𝐴1 | · · · | 𝜄𝑛 of 𝐴𝑛} |} B
⋃

𝑖 {𝜄𝑖 𝑉 | 𝑉 ∈ V{|𝐴𝑖 |}}

C{|𝐴|} B
{
𝑀 ∈ · ` 𝐴

�� ∀𝜏 ∈ J𝑀Kc
M∃𝑉 ∈ V{|𝐴|} . 𝑀 :: 𝜏 :: 𝑉

}
In regards to open terms, for every typing context 𝛤 we define

X{|𝛤 |} B {Θ ∈ Sub𝛤 | ∀(𝑎 : 𝐴) ∈ 𝛤 .Θ𝑎 ∈ V{|𝐴|}}

and define 𝛤 �𝑀 : 𝐴 for 𝛤 ` 𝑀 : 𝐴 as ∀Θ ∈ X{|𝛤 |} .Θ𝑀 ∈ C{|𝐴|}.

TheoRem B.23 (Fundamental Lemma). If 𝛤 ` 𝑀 : 𝐴, then 𝛤 �𝑀 : 𝐴.

We devote lemmas to inductive cases of the Fundamental Lemma’s proof.

Lemma B.24. If 𝜏 B 𝛼 𝜉 𝜔 ∴ 〈〉 ∈ Jstoreℓ,𝑣KM , then ℓ := 𝑣 :: 𝜏 :: 〈〉.

PRoof. W.l.o.g. 𝜏 ∈ Jstoreℓ,𝑣KG , because the general case then follows from Lemma B.22.
Thus, the interrupted execution is just a single StoRe step. Indeed, the states 〈 ¤𝛼, 𝜉 .o〉 and 〈 ¤𝜔, 𝜉 .c〉

match those in StoRe’s conclusion. The conditions of StoRe are met thanks to 𝜏 being a trace,
e.g. the segment of the stored message being unoccupied due to 𝜉 .c being well-formed. �

Lemma B.25. If 𝜏 B 𝛼 𝜉 𝜔 ∴ 𝑣 ∈
q
rmwℓ,𝜑 ®𝑤

y
M , then rmw𝜑 (ℓ ; ®𝑤) :: 𝜏 :: 𝑣 .

PRoof. W.l.o.g. 𝜏 ∈
q
rmwℓ,𝜑 ®𝑤

y
G , because the general case then follows from Lemma B.22.

Thus, the interrupted execution is a single ReadOnly step (if 𝜏 ∈
r
rmwRO

ℓ,𝜑 ®𝑤

z
G
) or a single RMW

step (if 𝜏 ∈
r
rmwRMW

ℓ,𝜑 ®𝑤

z
G
), in which the initial view points to the loaded message. �

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548

52 Yotam Dvir, Ohad Kammar, and Ori Lahav

To address concurrent execution, let 〈𝑇,𝑀〉
𝜉
 ∗ 〈𝑅,𝑉 〉 be an interrupted execution of the form

〈𝑇1, 𝜇1〉 , 𝑀1 ∗
RA≤ 〈𝑇2, 𝜌1〉 , 𝑀2 〈𝑇2, 𝜇2〉 , 𝑀2 ∗

RA≤ 〈𝑇3, 𝜌2〉 , 𝑀3 ... 〈𝑇𝑛, 𝜇𝑛〉 , 𝑀𝑛 ∗
RA≤ 〈𝑇𝑛+1, 𝜌𝑛〉 , 𝑀𝑛+1

where𝑀1 = 𝑀 ,𝑀𝑛+1 = 𝑉 , 𝑇1 = 𝑇 , 𝑇𝑛+1 = 𝑅, and 𝜉 = 〈𝜇1, 𝜌1〉 ... 〈𝜇𝑛, 𝜌𝑛〉.

Lemma B.26. If 𝜉 ∈ 𝜉1 ‖ 𝜉2 and𝑀𝑖 :: 𝛼𝑖 𝜉𝑖 𝜔𝑖 ∴ 𝑟𝑖 :: 𝑉𝑖 , then

𝑀1 | | 𝑀2 :: inf𝜉 .o {𝛼1, 𝛼2} 𝜉 sup𝜉 .c {𝜔1, 𝜔2} ∴ 〈𝑟1, 𝑟2〉 :: 〈𝑉1,𝑉2〉

PRoof. By assumption, 〈 ¤𝛼𝑖 , 𝑀𝑖〉
𝜉𝑖
 ∗ 〈 ¤𝜔𝑖 ,𝑉𝑖〉 and J𝑉𝑖Kv

M = 𝑟𝑖 . We obtain the required〈 ¤inf𝜉 .o {𝛼1, 𝛼2}, 𝑀1 ∥ 𝑀2
〉 𝜉
 ∗

〈
¤sup𝜉 .c {𝜔1, 𝜔2}, 〈𝑉1,𝑉2〉

〉
by interleaving the interrupted executions following the interleaving that generated 𝜉 , prepending
to the first transition PaRInit followed by PaRLeft/PaRRight-lifted Adv’s, and appending to the
last transition PaRFin (since sup𝜉 .c {𝜔1, 𝜔2} = 𝜔1 t 𝜔2). �

PRoof of the Fundamental Lemma. By induction on the typing derivation 𝛤 ` 𝑀 : 𝐴.
Let Θ ∈ Sub𝛤 be such that ∀(𝑎 : 𝐴) ∈ 𝛤 .Θ𝑎 ∈ V{|𝐴|}. To show Θ𝑎 = Θ𝑎 ∈ C{|𝐴|},
let 𝜏 ∈ JΘ𝑎Kc

M = returnMJΘ𝑎Kv
M . Suffice it we show Θ𝑎 :: 𝜏 :: Θ𝑎 . Using Lemma B.22,

we restrict to the case of 𝜏 ∈ returnGJΘ𝑎Kv
M . So 𝜏 is of the form 𝜅 〈𝜇, 𝜇〉 𝜅 ∴ JΘ𝑎Kv

M .

(𝑎 : 𝐴) ∈ 𝛤
𝛤 � 𝑎 : 𝐴

The required interrupted execution is obtained by taking no steps in its only transition.
Let Θ ∈ Sub𝛤 be such that ∀(𝑎 : 𝐴) ∈ 𝛤 .Θ𝑎 ∈ V{|𝐴|}. Denote by 𝐾
the term Θ (𝜆𝑎 : 𝐴.𝑀) = 𝜆𝑎 : 𝐴. Θ|∉{𝑎} 𝑀 . To show that 𝐾 ∈ C{|𝐴|},
let 𝜏 ∈ J𝐾Kc

M = returnMJ𝐾Kv
M . Like the previous case, we can show

𝛤, 𝑎 : 𝐴 �𝑀 : 𝐵

𝛤 � 𝜆𝑎 : 𝐴.𝑀 : 𝐴→ 𝐵

𝐾 :: 𝜏 :: 𝐾 using Lemma B.22. This is sufficient, because 𝐾 ∈ V{|𝐴→ 𝐵 |}. Indeed, for 𝑉 ∈ V{|𝐴|},
denoting by Θ[𝑉 /𝑎] the substitution equal to Θ except at 𝑉 which it maps to 𝑎, by the induction
hypothesis we have

(
Θ|∉{𝑎} 𝑀

)
[𝑎 ↦→ 𝑉] = Θ[𝑉 /𝑎]𝑀 ∈ C{|𝐵 |}.
Let Θ ∈ Sub𝛤 be such that ∀(𝑎 : 𝐴) ∈ 𝛤 .Θ𝑎 ∈ V{|𝐴|}.
To show that Θ(𝑁𝑀) = (Θ𝑁) (Θ𝑀) ∈ C{|𝐴|} holds, let 𝜏 ∈J(Θ𝑁) (Θ𝑀)Kc

M = JΘ𝑁 Kc
M ⟫=

M 𝜆𝑓 . JΘ𝑀Kc
M ⟫=

M 𝑓 . Unfolding:

𝛤 �𝑀 : 𝐴 𝛤 � 𝑁 : 𝐴→ 𝐵

𝛤 � 𝑁𝑀 : 𝐵

∃ 𝜏1 B 𝛼1 𝜉1 𝜔1 ∴ 𝑓 ∈ JΘ𝑁 Kc
M, 𝜏2 B 𝛼2 𝜉2 𝜔2 ∴ 𝑟 ∈ JΘ𝑀Kc

M, 𝜏3 B 𝛼3 𝜉3 𝜔3 ∴ 𝑠 ∈ 𝑓 𝑟 .
𝜔1 ≤ 𝛼2 ∧ 𝜔2 ≤ 𝛼3 ∧ 𝜏 = 𝛼1 𝜉1𝜉2𝜉3 𝜔3 ∴ 𝑠 ∈ J(Θ𝑁) (Θ𝑀)Kc

M

By the induction hypotheses, there exists 𝜆𝑎 : 𝐴. 𝐾 ∈ V{|𝐴→ 𝐵 |} such that Θ𝑁 :: 𝜏1 :: 𝜆𝑎 :
𝐴. 𝐾 , and there exists 𝑉 ∈ V{|𝐴|} such that Θ𝑀 :: 𝜏2 :: 𝑉 . So 𝐾 [𝑎 ↦→ 𝑉] ∈ C{|𝐵 |}, and using
the Substitution Lemma: 𝑓 𝑟 = J𝜆𝑎 : 𝐴. 𝐾Kv

MJ𝑉 Kv
M = J𝐾 [𝑎 ↦→ 𝑉]Kc

M . Therefore, there exists𝑊 ∈
V{|𝐵 |} such that𝐾 [𝑎 ↦→ 𝑉] :: 𝜏3 ::𝑊 . We transform to sequence the interrupted executions into one
that corresponds to 𝜏 as follows: we lift the one corresponding to 𝜏1 using AppLeft to the context
[−] (Θ𝑀), we lift the one corresponding to 𝜏2 using AppRight to the context (𝜆𝑎 : 𝐴. 𝐾) [−], and
we prepend App to the one corresponding to 𝜏3. By using Adv to compensate for the difference in
delimiting views, we get (Θ𝑁) (Θ𝑀) :: 𝜏 ::𝑊 .

Binds unfold like
in the case above.
The rest is handled

𝛤 �𝑀 : Loc 𝛤 � 𝑁 : Val

𝛤 �𝑀 := 𝑁 : 1

𝜑 ∈ RMW𝑛 𝛤 �𝑀 : Loc 𝛤 � 𝑁 : Val𝑛

𝛤 � rmw𝜑 (𝑀 ;𝑁) : Val
using Lemma B.24 and Lemma B.25 respectively.

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597

A Denotational Approach to Release/Acquire Concurrency 53

Let Θ ∈ Sub𝛤 be such that ∀(𝑎 : 𝐴) ∈ 𝛤 .Θ𝑎 ∈ V{|𝐴|}. Thanks to
Lemma B.22, to show Θ(𝑀1 ∥ 𝑀2) = Θ𝑀1 ∥ Θ𝑀2 ∈ C{|𝐴1 ∗𝐴2 |}, it
is sufficient to consider 𝜏 ∈ JΘ𝑀1Kc

M | | |G JΘ𝑀2Kc
M . Unfolding the

𝛤 �𝑀1 : 𝐴1 𝛤 �𝑀2 : 𝐴2

𝛤 �𝑀1 ∥ 𝑀2 : (𝐴1 ∗𝐴2)
concurrent construct, there exist 𝜏𝑖 B 𝛼𝑖 𝜉𝑖 𝜔𝑖 ∴ 𝑟𝑖 ∈ JΘ𝑀𝑖Kc

M and 𝜉 ∈ 𝜉1 ‖ 𝜉2 such that 𝜏 B
inf𝜉 .o {𝛼1, 𝛼2} 𝜉 sup𝜉 .c {𝜔1, 𝜔2} ∴ 〈𝑟1, 𝑟2〉. By induction hypotheses, there exist 𝑉𝑖 ∈ V{|𝐴𝑖 |} such
that Θ𝑀𝑖 :: 𝜏𝑖 :: 𝑉𝑖 . So 〈𝑉1,𝑉2〉 ∈ V{|𝐴1 ∗𝐴2 |}, and by Lemma B.26, Θ𝑀1 ∥ Θ𝑀2 :: 𝜏 :: 〈𝑉1,𝑉2〉.

The other cases are treated similarly. �

To prove the Evaluation Lemma we observe that 𝔞-rewrites preserve evaluation:

Lemma B.27. For x ∈ 𝔞, if 𝜋 x−→ 𝜏 and
〈 ¤𝜋.ivw, 𝜋 .ch.o

〉
, 𝑀 ⇓ 𝜋.vl, then

〈 ¤𝜏 .ivw, 𝜏 .ch.o
〉
, 𝑀 ⇓ 𝜏 .vl.

PRoof. In any case, 𝜏 .vl = 𝜋.vl. If x = Ti or x = Ab, then also 𝜏 .ivw = 𝜋.ivw and 𝜏 .ch.o =
𝜏 .ch.o, so the claim holds trivially. Only x = Di remains, where 𝜋.ivw = 𝜏 .ivw [↑𝜖] and 𝜋.ch.o =
𝜏 .ch.o [↑𝜖] for some message 𝜖 . We obtain the required execution underlying

〈 ¤𝜏 .ivw, 𝜏 .ch.o
〉
, 𝑀 ⇓

𝜏 .vl from the one that underlies
〈 ¤𝜋.ivw, 𝜋 .ch.o

〉
, 𝑀 ⇓ 𝜋.vl by replacing the timestamp 𝜖.i with

𝜖.t everywhere. We elide the straightforward simulation argument that justifies this. �

PRoof of the Evaluation Lemma. Denote 𝜏 B 𝛼 〈𝜇, 𝜌〉 𝜔∴ 𝑟 ∈ J𝑀Kc. By Retroactive Closure,J𝑀Kc = J𝑀Kc
M

𝔞 . So there exists 𝜋 ∈ J𝑀Kc
M such that 𝜋 𝔞−→ 𝜏 . Proceed by induction on the number

of 𝔞-rewrites. If none, 𝜏 = 𝜋 ∈ J𝑀Kc
M , so by the Fundamental Lemma,𝑀 :: 𝜏 :: 𝑉 for some 𝑉 . Since

𝑀 is of ground type, so is 𝑉 = J𝑉 Kv
M = 𝑟 , and thus 〈 ¤𝛼, 𝜇〉 , 𝑀 ∗

RA≤ 〈 ¤𝜔, 𝜌〉 , 𝑟 , so 〈 ¤𝛼, 𝜇〉 , 𝑀 ⇓ 𝑟 .
Otherwise, we have 𝜋 𝔞−→ 𝜏 ′

x−→ 𝜏 where x ∈ 𝔞 and
〈 ¤𝜏 ′ .ivw, 𝜏 ′ .ch.o

〉
, 𝑀 ⇓ 𝜏 ′ .vl by the induction

hypothesis. We replace 𝜏 ′ with 𝜏 using Lemma B.27, as required. �

C VALIDATING TRANSFORMATIONS
Table 2 lists various transformations𝑀 � 𝑁 that can be proved this way, organized such that the
general pattern appears first, followed by specific instantiations and corollaries.

For handling the RMW modifiers, we use additional notations. For modifiers Φ,Ψ ∈ Val ⇀ Val:
• The domain of definition of Φ is domΦ B {𝑣 ∈ Val | Φ𝑣 ≠ ⊥}.
• We say that Ψ is an expansion of Φ, denoted by Φ ≤ Ψ, if Φ𝑣 ≠ Ψ𝑣 occurs only when Φ𝑣 = ⊥

and Ψ𝑣 = 𝑣 . Intuitively, this means that Φ and Ψ are the same, except that in some cases in
which Φ reads and does not write, Ψ atomically reads and rewrites the read value.
• We denote by Φid the unique expansion of Φ that is total: Φid𝑣 B if Φ𝑣=⊥ then 𝑣 elseΦ𝑣 .

Intuitively, Φid rewrites the read value whenever Φ reads but does not write.
• We let

(
Ψ ◦id Φ

)
𝑣 B if Φ𝑣=⊥ thenΨ𝑣 elseΨid (Φ𝑣). Intuitively,

(
Ψ ◦id Φ

)
composes the

modification of Φ followed by the modification of Ψ, only failing if both do.
Moreover, some optimizations involving modifiers assume the language can express correspond-
ing constructs. For example, the Write-RMW Elimination instantiated with 𝜑 = faa requires addi-
tion (+), and the RMW-Write Elimination instantiated with 𝜑 = cas requires branching on value
comparison (if − = − then− else−). Under this assumption, for every primitive modifier 𝜑 and
every tuple ®𝑣 of length 𝜑.ar, both 𝜑®𝑣 and 𝜑 id

®𝑣 are represented by closed, pure (effect-free) terms, of
type Val→ {𝜄⊥ of 1 | 𝜄> of Val} and Val→ Val respectively. These are used implicitly in Table 2.

In the following we prove selected results from Table 2. We explicitly mention the use of 𝔞-
rewrites, but often leave uses of 𝔠-rewrites implicit. For convenience, we denote 𝛼 𝜉𝜂 𝜔 ∴ 𝑠 B
(𝛼 𝜉 𝜅 ∴ 𝑟) ⟫= (𝜎 𝜂 𝜔 ∴ 𝑠), and we say this trace resulted from binding the first with the second.

PRoposition C.1. If 𝛤 ` 𝑀1 : 𝐴1; 𝛤 ` 𝑁1 : 𝐵1; 𝛤, 𝑎 : 𝐴′ ` 𝑀2 : 𝐴2; and 𝛤,𝑏 : 𝐵′ ` 𝑁2 : 𝐵2:J(let𝑎 = 𝑀1 in𝑀2) ∥ (let𝑏 = 𝑁1 in𝑁2)Kc ⊇ Jmatch𝑀1 ∥ 𝑁1 with 〈𝑎,𝑏〉. 𝑀2 ∥ 𝑁2Kc

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646

54 Yotam Dvir, Ohad Kammar, and Ori Lahav

Table 2. Validated transformations. Needed rules used from 𝔞 appear above the symbol�.

Generalized Sequencing
(let𝑎 = 𝑀1 in𝑀2) ∥ (let𝑏 = 𝑁1 in𝑁2) �
match𝑀1 ∥ 𝑁1 with 〈𝑎,𝑏〉. 𝑀2 ∥ 𝑁2

Sequencing 𝑀 ∥ 𝑁 � 〈𝑀, 𝑁 〉
Irrelevant Read Introduction 〈〉 � ℓ? ; 〈〉
Irrelevant Read Elimination ℓ? ; 〈〉 � 〈〉
Write-Write Elimination
ℓ :=𝑤 ; ℓ := 𝑣

Ab
� ℓ := 𝑣

Write-Read Deorder (ℓ ≠ ℓ ′)
〈ℓ := 𝑣, ℓ ′?〉 Ti

� ℓ := 𝑣 ∥ ℓ ′?
RMW Expansion (𝜑®𝑣 ≤ 𝜓 ®𝑤)

rmw𝜑 (ℓ ; ®𝑣)
Di
� rmw𝜓 (ℓ ; ®𝑤)

ℓ?
Di
� CAS (ℓ, 𝑣, 𝑣)

CAS (ℓ, 𝑣, 𝑣) Di
� FAA (ℓ, 0)

Atomic Store
ℓ := 𝑣 � XCHG (ℓ, 𝑣) ; 〈〉

Symmetric-Monoidal Laws, e.g.
𝑀 ∥ 𝑁 � match𝑁 ∥ 𝑀 with 〈𝑏, 𝑎〉. 〈𝑎,𝑏〉

Write-RMW Elimination
ℓ := 𝑣 ; rmw𝜑 (ℓ ; ®𝑤)

Ab
� ℓ := 𝜑 id

®𝑤𝑣 ; 𝑣
ℓ := 𝑣 ; ℓ? � ℓ := 𝑣 ; 𝑣

ℓ := 𝑣 ; CAS (ℓ, 𝑣,𝑢) Ab
� ℓ := 𝑢 ; 𝑣

ℓ := 𝑣 ; CAS (ℓ,𝑤,𝑢) � ℓ := 𝑣 ; 𝑣 (𝑣 ≠ 𝑤)
ℓ := 𝑣 ; FAA (ℓ,𝑤) Ab

� ℓ := 𝑣 +𝑤 ; 𝑣

ℓ := 𝑣 ; XCHG (ℓ,𝑤) Ab
� ℓ :=𝑤 ; 𝑣

RMW-Write Elimination (dom𝜓 ®𝑤 ⊇ dom𝜑 ®𝑢)
let𝑎 = rmw𝜑 (ℓ ; ®𝑢) in

match (𝜓 ®𝑤) 𝑎with
{𝜄⊥ _.𝑎 | 𝜄> 𝑣 .ℓ := 𝑣 ; 𝑎}

Ab
� rmw𝜓 (ℓ ; ®𝑤)

let𝑎 = ℓ? in (if 𝑎 = 𝑣
then ℓ :=𝑤 else 〈〉) ; 𝑎 � CAS (ℓ, 𝑣,𝑤)

let𝑎 = ℓ? in ℓ := 𝑎 + 𝑣 ; 𝑎 � FAA (ℓ, 𝑣)
let𝑎 = ℓ? in ℓ := 𝑣 ; 𝑎 � XCHG (ℓ, 𝑣)

RMW-RMW Elimination
〈
rmw𝜑 (ℓ ; ®𝑣) , rmw𝜓 (ℓ ; ®𝑤)

〉 Ab
� let𝑎 = rmw𝜁 (ℓ ; ®𝑢) in

〈
𝑎, 𝜑 id
®𝑣 𝑎

〉
(𝜁 ®𝑢 = 𝜓 ®𝑤 ◦id 𝜑®𝑣)

〈ℓ?, ℓ?〉 � let𝑎 = ℓ? in 〈𝑎, 𝑎〉 〈FAA (ℓ, 𝑣) , FAA (ℓ,𝑤)〉 � let𝑎 = FAA (ℓ, 𝑣 +𝑤) in 〈𝑎, 𝑎 + 𝑣〉
〈ℓ?,CAS (ℓ, 𝑣,𝑤)〉 � let𝑎 = CAS (ℓ, 𝑣,𝑤) in 〈𝑎, 𝑎〉 〈XCHG (ℓ,𝑤) , ℓ?〉 � let𝑎 = XCHG (ℓ,𝑤) in 〈𝑎,𝑤〉

(Formally, in the right denotation we use 𝛤, 𝑎 : 𝐴′, 𝑏 : 𝐵′ ` 𝑀2 : 𝐴2 and 𝛤, 𝑎 : 𝐴′, 𝑏 : 𝐵′ ` 𝑁2 : 𝐵2.)

PRoof. Let 𝛾 ∈ J𝛤 K and denote the left and right sets of the required containment by 𝑃 and 𝑄
respectively. Thus we require 𝑃 ⊇ 𝑄 .

Let 𝜚 ∈ 𝑄 . By Deferral of Closure, 𝜚 is in the 𝔠𝔞-closure of:

𝑄 ′ B J𝑀1Kc 𝛾 | | |G J𝑁1Kc 𝛾 ⟫=G 𝜆〈𝛾𝑎, 𝛾𝑏〉. J𝑀2Kc (𝛾𝑐) (𝑐 :𝐶) ∈𝛤,𝑎:𝐴′ | | |G J𝑁2Kc (𝛾𝑐) (𝑐 :𝐶) ∈𝛤,𝑏:𝐵′
So there exists 𝜚 ′ ∈ 𝑄 ′ that 𝔠𝔞-rewrites to 𝜚 . This 𝜚 ′ results from binding two traces. On the left,
inf𝜉 .o {𝛼1, 𝜅1} 𝜉 𝜔1 t 𝜎1 ∴ 〈𝑟1, 𝑠1〉, where:

𝜏1 B 𝛼1 𝜉1 𝜔1 ∴ 𝑟1 ∈ J𝑀1Kc 𝛾 ; 𝜋1 B 𝜅1 𝜂1 𝜎1 ∴ 𝑠1 ∈ J𝑁1Kc 𝛾 ; 𝜉 ∈ 𝜉1 ‖ 𝜂1
On the right, inf𝜂.o {𝛼2, 𝜅2} 𝜂 𝜔2 t 𝜎2 ∴ 〈𝑟2, 𝑠2〉, where, setting 𝛾𝑎 B 𝑟1 and 𝛾𝑏 B 𝑠1:

𝜏2 B 𝛼2 𝜉2 𝜔2∴𝑟2 ∈ J𝑀2Kc (𝛾𝑐) (𝑐 :𝐶) ∈𝛤,𝑎:𝐴′ ; 𝜋2 B 𝜅2 𝜂2 𝜎2∴𝑠2 ∈ J𝑁2Kc (𝛾𝑐) (𝑐 :𝐶) ∈𝛤,𝑏:𝐵′ ; 𝜂 ∈ 𝜉2 ‖ 𝜂2
The binding implies that 𝜔1 t 𝜎1 ≤ inf𝜂.o {𝛼2, 𝜅2}. In particular, 𝜔1 ≤ 𝛼2 and 𝜎1 ≤ 𝜅2. Therefore,
𝜏1 ⟫= 𝜏2 = 𝛼1 𝜉1𝜉2 𝜔2∴𝑟2 ∈ Jlet𝑎 = 𝑀1 in𝑀2Kc and 𝜋1 ⟫= 𝜋2 = 𝜅1 𝜂1𝜂2 𝜎2∴𝑠2 ∈ Jlet𝑏 = 𝑁1 in𝑁2Kc.
Since 𝜉𝜂 ∈ 𝜉1𝜉2 ‖ 𝜂1𝜂2 and (𝜉𝜂).o = 𝜉 .o, we obtain 𝜚 ′ by interleaving these. Therefore, 𝜚 ′ ∈ 𝑃 .
Since 𝑃 is 𝔠𝔞-closed, 𝜚 ∈ 𝑃 . �

PRoposition C.2. J〈〉Kc ⊇ Jℓ? ; 〈〉Kc
G .

PRoof. Let 𝜏 ∈ Jℓ? ; 〈〉Kc
G . Unfolding definitions:

Jℓ? ; 〈〉Kc
G B Jrmwℓ,𝜆_.⊥KG ⟫=G 𝜆_. returnG 〈〉 = {

𝛼 〈𝜇, 𝜇〉 〈𝜌, 𝜌〉 𝜔 ∴ 〈〉 ∈ Trace1
�� ∃𝜈 ∈ 𝜇ℓ . 𝛼 � 𝜈

}
, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695

A Denotational Approach to Release/Acquire Concurrency 55

Therefore, we have the form 𝜏 = 𝛼 〈𝜇, 𝜇〉 〈𝜌, 𝜌〉 𝜔 ∴ 〈〉. From 𝛼 〈𝜇, 𝜇〉 𝛼 ∴ 〈〉 ∈ J〈〉Kc
G , we obtain

𝜏 ∈ J〈〉Kc by stuttering (St) and forwarding (Fw). �

PRoposition C.3. Jℓ := 𝑣Kc ⊇ JXCHG (ℓ, 𝑣) ; 〈〉Kc
G .

PRoof. By taking the traces in Jℓ := 𝑣Kc
G in which the newly added message dovetails with the

previous message in memory by choosing the initial timestamp appropriately. �

PRoposition C.4. Assuming ℓ ≠ ℓ ′, J〈ℓ := 𝑣, ℓ ′?〉Kc ⊇ Jℓ := 𝑣 ∥ ℓ ′?Kc
G .

PRoof. The elements of Jstoreℓ,𝑣KG | | |G Jrmwℓ ′,𝜆_.⊥KG are formed by interleaving a store

𝜅 〈𝜇, 𝜇] {ℓ :𝑣@(𝑞, 𝑡]⟪𝜅 [ℓ ↦→ 𝑡]⟫}〉 𝜅 [ℓ ↦→ 𝑡] ∴ 〈〉 ∈ Jstoreℓ,𝑣KG
with a load 𝜎 〈𝜌, 𝜌〉 𝜎 ∴ 𝑤 ∈ Jrmwℓ ′,𝜆_.⊥KG . Depending on the order, this results in one of:

inf𝜇 {𝜅, 𝜎} 〈𝜇, 𝜇] {ℓ :𝑣@(𝑞, 𝑡]⟪𝜅 [ℓ ↦→ 𝑡]⟫}〉 〈𝜌, 𝜌〉 𝜅 [ℓ ↦→ 𝑡] t 𝜎 ∴ 〈〈〉,𝑤〉 (WR)
inf𝜌 {𝜅, 𝜎} 〈𝜌, 𝜌〉 〈𝜇, 𝜇] {ℓ :𝑣@(𝑞, 𝑡]⟪𝜅 [ℓ ↦→ 𝑡]⟫}〉 𝜅 [ℓ ↦→ 𝑡] t 𝜎 ∴ 〈〈〉,𝑤〉 (RW)

We prove separately that these interleavings are in J〈ℓ := 𝑣, ℓ ′?〉Kc.
• (WR): Denoting𝛼 B inf𝜇 {𝜅, 𝜎} and𝜃 B (𝜌 \ {ℓ :𝑣@(𝑞, 𝑡]⟪𝜅 [ℓ ↦→ 𝑡]⟫})]{ℓ :𝑣@(𝑞, 𝑡]⟪𝛼 [ℓ ↦→ 𝑡]⟫}:

𝛼 〈𝜇, 𝜇] {ℓ :𝑣@(𝑞, 𝑡]⟪𝛼 [ℓ ↦→ 𝑡]⟫}〉 𝛼 [ℓ ↦→ 𝑡] ∴ 〈〉 ∈ Jstoreℓ,𝑣KG
𝛼 [ℓ ↦→ 𝑡] t 𝜎 〈𝜃, 𝜃〉 𝛼 [ℓ ↦→ 𝑡] t 𝜎 ∴ 𝑤 ∈ Jrmwℓ ′,𝜆_.⊥KG

By forwarding (Fw) after binding we obtain:

𝛼 〈𝜇, 𝜇] {ℓ :𝑣@(𝑞, 𝑡]⟪𝛼 [ℓ ↦→ 𝑡]⟫}〉 〈𝜃, 𝜃〉 𝜅 [ℓ ↦→ 𝑡] t 𝜎 ∴ 〈〈〉,𝑤〉 ∈ J〈ℓ := 𝑣, ℓ ′?〉Kc

All that remains is to tighten (Ti) ℓ :𝑣@(𝑞, 𝑡]⟪𝛼 [ℓ ↦→ 𝑡]⟫ to ℓ :𝑣@(𝑞, 𝑡]⟪𝜅 [ℓ ↦→ 𝑡]⟫.
• (RW): Using the result for (WR), with 𝜃 B 𝜇] {ℓ :𝑣@(𝑞, 𝑡]⟪𝜅 [ℓ ↦→ 𝑡]⟫}:

inf𝜇 {𝜅, 𝜎} 〈𝜇, 𝜃〉 〈𝜃, 𝜃〉 𝜅 [ℓ ↦→ 𝑡] t 𝜎 ∴ 〈〈〉,𝑤〉 ∈ J〈ℓ := 𝑣, ℓ ′?〉Kc

We can rewind (Rw) inf𝜇 {𝜅, 𝜎} to inf𝜌 {𝜅, 𝜎}, since 𝜌 ⊆ 𝜇. By mumbling (Mu) and stutter-
ing (St), we are done. �

PRoposition C.5. Assuming 𝜑®𝑣 ≤ 𝜓 ®𝑤 ,
q
rmw𝜑 (ℓ ; ®𝑣)

yc ⊇
q
rmw𝜓 (ℓ ; ®𝑤)

yc
G .

PRoof. Let 𝜏 ∈
q
rmw𝜓 (ℓ ; ®𝑤)

yc
G , resulting from loading a value 𝑢 from a message 𝜈 . If 𝜑®𝑣𝑢 =

𝜓 ®𝑤𝑢, then obviously 𝜏 ∈
q
rmw𝜑 (ℓ ; ®𝑣)

yc
G . Otherwise, by assumption 𝜑®𝑣𝑢 = ⊥ and 𝜓 ®𝑤𝑢 = 𝑢. So

we have 𝜏 = 𝜅 〈𝜇, 𝜇] {𝜖}〉 𝜅 [ℓ ↦→ 𝑡] ∴ 𝑢, with 𝜖 B ℓ :𝑢@(𝜅ℓ , 𝑡]⟪𝜅 [ℓ ↦→ 𝑡]⟫, where 𝜈 ∈ 𝜇ℓ and
𝜈.t = 𝜅ℓ . In the left denotation, by loading 𝜈 [↑𝜖] we have 𝜅 [↑𝜖] 〈𝜇 [↑𝜖], 𝜇 [↑𝜖]〉 𝜅 [↑𝜖] ∴ 𝑢 =(
𝜅 〈𝜇, 𝜇〉 𝜅 [ℓ ↦→ 𝑡] ∴ 𝑢

)
[↑𝜖]. By diluting (Di) we obtain 𝜏 . �

PRoposition C.6. Assuming ∀ 𝑣 ′ ∈ Val. 𝜁 ®𝑢𝑣 ′ =
(
𝜓 ®𝑤𝑣′ ◦id 𝜑®𝑣

)
𝑣 ′,q

let𝑎 = rmw𝜑 (ℓ ; ®𝑣) in
〈
𝑎, rmw𝜓 (ℓ ; ®𝑤𝑎)

〉yc ⊇
r
let𝑎 = rmw𝜁 (ℓ ; ®𝑢) in

〈
𝑎, 𝜑 id
®𝑣 𝑎

〉zc

G

PRoof. Let𝜋 ∈
r
let𝑎 = rmw𝜁 (ℓ ; ®𝑢) in

〈
𝑎, 𝜑 id
®𝑣 𝑎

〉zc

G
. So a𝜏 ′ B 𝛼 〈𝜇, 𝜌〉 𝜔∴𝑣 ′ ∈

q
rmw𝜁 (ℓ ; ®𝑢)

yc
G

exists due to loading 𝜈 ∈ 𝜇ℓ with 𝜈.vl = 𝑣 ′, such that 𝜏 B 𝛼 〈𝜇, 𝜌〉 𝜔 ∴
〈
𝑣 ′, 𝜑 id

®𝑣 𝑣
′
〉

St−→ Fw−−→ 𝜋 .

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744

56 Yotam Dvir, Ohad Kammar, and Ori Lahav

RO. If 𝜏 ′ ∈
r
rmwRO

ℓ,𝜁 ®𝑢

z
G
, then we have 𝜏 = 𝜅 〈𝜇, 𝜇〉 𝜅 ∴

〈
𝑣 ′, 𝜑 id

®𝑣 𝑣
′
〉
where 𝜁 ®𝑢𝑣 ′ = ⊥ and 𝜈.t = 𝜅ℓ .

By assumption, 𝜑®𝑣𝑣 ′ = ⊥, so 𝜑 id
®𝑣 𝑣
′ = 𝑣 ′; and𝜓 ®𝑤𝑣′𝑣

′ = ⊥, so by loading 𝜈 in both RMWs we
can obtain 𝜏 in the left denotation.

RMW. If 𝜏 ′ ∈
r
rmwRMW

ℓ,𝜁 ®𝑢

z
G
, then we have 𝜏 = 𝜅 〈𝜇, 𝜇] {ℓ :𝑢′@(𝜅ℓ , 𝑡]⟪𝜅 [ℓ ↦→ 𝑡]⟫}〉 𝜅 [ℓ ↦→ 𝑡] ∴〈

𝑣 ′, 𝜑 id
®𝑣 𝑣
′
〉
where 𝜁 ®𝑢𝑣 ′ = 𝑢′ and 𝜈.t = 𝜅ℓ . The 𝜑®𝑣𝑣 ′ = ⊥ case is similar to before, where again

𝜏 is found in the left denotation by loading 𝜈 in both RMWs, with the difference that here
𝜓 ®𝑤𝑣′𝑣

′ = 𝑢′, to the second RMW also writes the message ℓ :𝑢′@(𝜅ℓ , 𝑡]⟪𝜅 [ℓ ↦→ 𝑡]⟫.
The 𝜑®𝑣𝑣 ′ = 𝑤 ′ case remains, in which 𝜑 id

®𝑣 𝑣
′ = 𝑤 ′. In the sub-case that 𝜓®𝑣𝑤 ′ = ⊥ we have

𝑤 ′ = 𝑢′, andwe find𝜏 in the left denotation by loading𝜈 andwriting ℓ :𝑢′@(𝜅ℓ , 𝑡]⟪𝜅 [ℓ ↦→ 𝑡]⟫
in the first RMW, which the second RMW loads.
In the sub-case where 𝜓®𝑣𝑤 ′ = 𝑢′, the first RMW writes ℓ :𝑤 ′@(𝜅ℓ , 𝜅ℓ+𝑡2]⟪𝜅

[
ℓ ↦→ 𝜅ℓ+𝑡

2

]
⟫ in-

stead. For the second RMW we take a trace with initial view 𝜅
[
ℓ ↦→ 𝜅ℓ+𝑡

2

]
, enabling its

loading of this new message and writing ℓ :𝑢′@(𝜅ℓ+𝑡2 , 𝑡]⟪𝜅 [ℓ ↦→ 𝑡]⟫. To find 𝜏 in the left
denotation we have the latter message absorb (Ab) the former message.

Either way, 𝜏 is in
q
let𝑎 = rmw𝜑 (ℓ ; ®𝑣) in

〈
𝑎, rmw𝜓 (ℓ ; ®𝑤𝑎)

〉yc, and therefore so is 𝜋 . �

CoRollaRy C.7. Assuming 𝜁 ®𝑢 = 𝜓 ®𝑤 ◦id 𝜑®𝑣 ,q〈
rmw𝜑 (ℓ ; ®𝑣) , rmw𝜓 (ℓ ; ®𝑤)

〉yc ⊇
r
let𝑎 = rmw𝜁 (ℓ ; ®𝑢) in

〈
𝑎, 𝜑 id
®𝑣 𝑎

〉zc

G

PRoof. Using a special case of Proposition C.6, where 𝜓 is independent of its final parameter.
�

PRoposition C.8.
q
ℓ := 𝑣 ; rmw𝜑 (ℓ ; ®𝑤)

yc ⊇
r
ℓ := 𝜑 id

®𝑤𝑣 ; 𝑣
zc

G
.

PRoof. Same as the RMW case in the proof of Proposition C.6, except the initial timestamp does
not have to equal the timestamp of the loaded message. �

PRoposition C.9. Jℓ :=𝑤 ; ℓ := 𝑣Kc ⊇ Jℓ := 𝑣Kc
G .

PRoof. Replace the second assignment on the left using Proposition C.3, and followwith Propo-
sition C.8. �

PRoposition C.10. Assuming dom𝜓 ®𝑤 ⊇ dom𝜑 ®𝑢 ,q
let𝑎 = rmw𝜑 (ℓ ; ®𝑢) in match𝜓 ®𝑤𝑎 with {𝜄⊥ _.𝑎 | 𝜄> 𝑣 .ℓ := 𝑣 ; 𝑎}

yc ⊇
q
rmw𝜓 (ℓ ; ®𝑤)

yc
G

PRoof. Let 𝜏 ∈
q
rmw𝜓 (ℓ ; ®𝑤)

yc
G =

q
rmwℓ,𝜓 ®𝑤

y
G =

r
rmwRO

ℓ,𝜓 ®𝑤

z
G
∪

r
rmwRMW

ℓ,𝜓 ®𝑤

z
G
.

RO. If 𝜏 ∈
r
rmwRO

ℓ,𝜓 ®𝑤

z
G
, then we have 𝜏 = 𝜅 〈𝜇, 𝜇〉 𝜅 ∴ 𝜈.vl where 𝜓 ®𝑤 (𝜈.vl) = ⊥, 𝜈 ∈ 𝜇ℓ , and

𝜈.t = 𝜅ℓ . Structurally, we haveJmatch (𝜓 ®𝑤) 𝜈.vl with {𝜄⊥ _.𝜈 .vl | 𝜄> 𝑣 .ℓ := 𝑣 ; 𝜈.vl}Kc = return𝜈.vl

By assumption, 𝜑 ®𝑢 (𝜈.vl) = ⊥. Loading the same message 𝜈 , we have 𝜏 ∈
q
rmw𝜑 (ℓ ; ®𝑢)

yc.
We obtain the desired trace from binding it with 𝜅 〈𝜇, 𝜇〉 𝜅 ∴ 𝜈.vl ∈ return𝜈.vl.

RMW. If 𝜏 ∈
r
rmwRMW

ℓ,𝜓 ®𝑤

z
G
, then we have 𝜏 = 𝜅 〈𝜇, 𝜇] {ℓ :𝑣@(𝜈.t, 𝑡]⟪𝜅 [ℓ ↦→ 𝑡]⟫}〉 𝜅 [ℓ ↦→ 𝑡] ∴

𝜈.vl where𝜓 ®𝑤 (𝜈.vl) = 𝑣 , 𝜈 ∈ 𝜇ℓ , and 𝜈.t = 𝜅ℓ . Structurally, we haveJmatch𝜓 ®𝑤 (𝜈.vl) with {𝜄⊥ _.𝜈 .vl | 𝜄> 𝑣 .ℓ := 𝑣 ; 𝜈.vl}Kc = Jℓ := 𝑣 ; 𝜈.vlKc

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793

A Denotational Approach to Release/Acquire Concurrency 57

Loading the same message 𝜈 , we proceed depending on 𝜑 ®𝑢 (𝜈.vl).
𝜑 ®𝑢 (𝜈.vl) = ⊥. We can bind 𝜅 〈𝜇, 𝜇〉 𝜅 ∴ 𝜈.vl ∈

q
rmw𝜑 (ℓ ; ®𝑢)

yc, with 𝜏 ∈ Jℓ := 𝑣 ; 𝜈.vlKc.
𝜑 ®𝑢 (𝜈.vl) ≠ ⊥. Then we have 𝜅 〈𝜇, 𝜌〉 𝜅

[
ℓ ↦→ 𝜅ℓ+𝑡

2

]
∴ 𝜈.vl ∈

q
rmw𝜑 (ℓ ; ®𝑢)

yc, where 𝜌 B
𝜇]

{
ℓ :𝜑 ®𝑢 (𝜈.vl) @(𝜈.t, 𝜅ℓ+𝑡2]⟪𝜅

[
ℓ ↦→ 𝜅ℓ+𝑡

2

]
⟫
}
. We can bind it with

𝜅
[
ℓ ↦→ 𝜅ℓ+𝑡

2

] 〈
𝜌, 𝜌]

{
ℓ :𝑣@(𝜅ℓ+𝑡2 , 𝑡]⟪𝜅 [ℓ ↦→ 𝑡]⟫

}〉
𝜅 [ℓ ↦→ 𝑡] ∴ 𝜈.vl ∈ Jℓ := 𝑣 ; 𝜈.vlKc

where at the end we absorb (Ab) the first message into the second. �

D COMMUTATIVITY DIAGRAMS
We prove Rewrite Commutativity via an elaborate case-split. The following lemma summarizing
insights we noted when we introduced the rewrite rules in §6, which will be helpful during the
case analysis.

Lemma D.1. For x ∈ 𝔤𝔠, assume 𝜏 is a trace and 𝜏 x−→ 𝜋 . Then, using the notations of Table 1:
• If x = Mu, then 𝜋 ∈ Trace.
• If x = Ls, then 𝜋 ∈ Trace iff LsØ(𝜈, 𝜂): either 𝜂 is empty, or 𝜈 ↩→

(
𝜂] {𝜈}

)
.o.

• If x = Ex, then 𝜋 ∈ Trace iff ExØ(𝜈, 𝜂): either 𝜂 is empty, or 𝜈 ↩→
(
𝜂] {𝜈}

)
.o.

• If x = Cn, then 𝜋 ∈ Trace iffCnØ(𝜖, 𝜉): either 𝜉 is empty, 𝜖.i ∉ 𝜉 .c.t, or 𝜖.seg∩⋃ 𝜉 .c.seg = ∅.
• If x = St, then 𝜋 ∈ Trace iff StØ(𝛼, 𝜇): 𝛼 � 𝜇 ∈ Mem.
• If x = Fw, then 𝜋 ∈ Trace iff FwØ(𝜔, 𝜉): 𝜔 ↩→ 𝜉 .c.
• If x = Rw, then 𝜋 ∈ Trace iff RwØ(𝛼, 𝜉): 𝛼 ↩→ 𝜉 .o.

We address each case, grouping those for which we reason similarly:
• For cases of St � y where y ∈ 𝔤 (1, 2, 3, 4, 5, 6), the required condition is about the

same chronicle as the assumed condition, except for possibly a removed transition. This
means that its opening memory is an extension of the original, and the closing memory is
a reduction of the original. The condition of pointing downwards into a memory is stable
under extensions, and the condition of non-intersection is stable under reductions. Cases
of Mu � y where y ∈ 𝔤 (7, 8, 9, 10, 11, 12) are simpler because the opening and closing
memory remain the same.
• The cases of Fw � y and Rw � y where y ∈ 𝔤 (13, 14, 15, 16, 17, 18) are trivial because the

required condition remains the same.
• For cases of Ti � y where y ∈ 𝔤, the required condition in the cases of y ∈ {Ls,Ex} (19,

20, 21, 22) holds because pointing downwards into a memory is stable under “loosening”
a message within the memory (𝜈 ≤ 𝜖). The remaining y = Cn case (23, 24, 25) holds be-
cause the difference between the required condition and the original keeps the occupied
timestamps the same, and the ←⊂= relation is stable under “loosening” the first argument.
• For cases of Ab � y where y ∈ 𝔤, the required condition in the cases of y ∈ {Ls,Ex}

(26, 27, 28, 29) holds because pointing downwards into a memory is stable under changing
a message’s initial timestamp and adding a message within the memory. The remaining
y = Cn case (30, 31, 32) holds because the difference between the required condition and
the original keeps the occupied timestamps the same, and the ←⊂= relation is stable under
changing the initial timestamp of the first argument.
• Cases of Di � y where y ∈ 𝔤 hold thanks to Lemma 6.5 when y ∈ {Ls,Ex} (33, 34, 35, 36,

37, 38). The remaining y = Cn case (39, 40, 41, 42) is the most complicated. First, we note
that (− [↑𝜖]) [↑𝜖 [↑𝜖]] = (− [↑𝜖]) [↑𝜖 [↑𝜖]], which means that the pre-trace to be “diluted”
is of the correct shape. The rewrite itself is valid because ←⊂= is stable under changing the

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842

58 Yotam Dvir, Ohad Kammar, and Ori Lahav

timestamp of the second argument. In particular, it is stable under pulling both arguments
along the same message which does not intersect the arguments’ segments. Finally, the
condition for the pre-trace to be a trace is satisfied because the message is being pulled
along a message that was either removed or known to appear later in the chronicle (as a
local message); either way, the segment is free. There are also the cases where they overlap
this way or that, in which we use the trivial dovetailing geometry of ←⊂=.
• For cases of x � St where x ∈ 𝔞, the required condition in the cases of x ∈ {Ti,Ab} (43,

44, 45, 46) holds because there remains a message at each timestamp where there was a
message originally, and the initial view remains the same. The remaining y = Di case (47,
48) holds because pointing-to is stable under pulling along a message; and if the initial view
pointed to the Di’ee then after pulling it, it will point to the Di’er pulled along the Di’ee.
• The cases of x � Mu where x ∈ 𝔞 (49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60) do not require

special considerations regarding conditions.
• For cases of x � y where x ∈ 𝔞 and y ∈ {Fw,Rw}, the required condition in the cases of

x ∈ {Ti,Ab} (61, 62, 63, 64) holds because pointing downwards into a memory is stable
under “loosening” a message within the memory (𝜈 ≤ 𝜖). The case of x ∈ Di (65, 66) hold
thanks to Lemma 6.5, and the fact that pointing downward into a memory is stable under
pulling along the same message; and if the delimiting view pointed to the Di’ee then after
pulling it, it will point to the Di’er pulled along the Di’ee.

𝛼 𝜉𝜂
(
𝜂′] {𝜖}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜇〉 𝜂
(
𝜂′] {𝜖}

)
𝜔

𝛼 𝜉𝜂
(
𝜂′] {𝜈}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜇〉 𝜂
(
𝜂′] {𝜈}

)
𝜔

St

Ls
𝜈 ≤vw 𝜖 ∧ LsØ(𝜈, 𝜂′)

Ls

𝜈 ≤vw 𝜖 ∧ LsØ(𝜈, 𝜂′)

St

1. The St � Ls case when the Ls’ee does not appear across the St’ee

𝛼 𝜉
(
𝜉 ′] {𝜖}

) (
𝜂] {𝜖}

)
𝜔

𝛼 𝜉
(
𝜉 ′] {𝜖}

)
〈𝜇] {𝜖}, 𝜇] {𝜖}〉

(
𝜂] {𝜖}

)
𝜔

𝛼 𝜉
(
𝜉 ′] {𝜈}

) (
𝜂] {𝜈}

)
𝜔

𝛼 𝜉
(
𝜉 ′] {𝜈}

)
〈𝜇] {𝜈}, 𝜇] {𝜈}〉

(
𝜂] {𝜈}

)
𝜔

St

Ls
𝜈 ≤vw 𝜖 ∧ LsØ(𝜈, 𝜉 ′𝜂)

Ls

𝜈 ≤vw 𝜖 ∧ LsØ(𝜈, 𝜉 ′ 〈𝜇, 𝜇〉 𝜂)

St

2. The St � Ls case when the Ls’ee appears across the St’ee

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891

A Denotational Approach to Release/Acquire Concurrency 59

𝛼 𝜉𝜂
(
𝜂′]

{
𝜖𝜈.ii

})
𝜔

𝛼 𝜉 〈𝜇, 𝜇〉 𝜂
(
𝜂′]

{
𝜖𝜈.ii

})
𝜔

𝛼 𝜉𝜂
(
𝜂′] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜇〉 𝜂
(
𝜂′] {𝜈, 𝜖}

)
𝜔

St

Ex
𝜈 ≤vw 𝜖 ∧ ExØ(𝜈, 𝜂′)

Ex

𝜈 ≤vw 𝜖 ∧ ExØ(𝜈, 𝜂′)

St

3. The St � Ex case when the Ex’ee does not appear across the St’ee

𝛼 𝜉
(
𝜉 ′]

{
𝜖𝜈.ii

}) (
𝜂]

{
𝜖𝜈.ii

})
𝜔

𝛼 𝜉
(
𝜉 ′]

{
𝜖𝜈.ii

}) 〈
𝜇]

{
𝜖𝜈.ii

}
, 𝜇]

{
𝜖𝜈.ii

}〉 (
𝜂]

{
𝜖𝜈.ii

})
𝜔

𝛼 𝜉
(
𝜉 ′] {𝜈, 𝜖}

) (
𝜂] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉
(
𝜉 ′] {𝜈, 𝜖}

)
〈𝜇] {𝜈, 𝜖}, 𝜇] {𝜈, 𝜖}〉

(
𝜂] {𝜈, 𝜖}

)
𝜔

St

Ex
𝜈 ≤vw 𝜖 ∧ ExØ(𝜈, 𝜉 ′𝜂)

Ex

𝜈 ≤vw 𝜖 ∧ ExØ(𝜈, 𝜉 ′ 〈𝜇, 𝜇〉 𝜂)

St

4. The St � Ex case when the Ex’ee appears across the St’ee

𝛼 𝜉𝜂
(
𝜂′] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜇〉 𝜂
(
𝜂′] {𝜈, 𝜖}

)
𝜔

(
𝛼 𝜉𝜂

(
𝜂′] {𝜈}

)
𝜔
)
[↑𝜖]

(
𝛼 𝜉 〈𝜇, 𝜇〉 𝜂

(
𝜂′] {𝜈}

)
𝜔
)
[↑𝜖]

St

Cn
𝜈 ←⊂= 𝜖 ∧ CnØ(𝜖, 𝜉 ′𝜂)

Cn

𝜈 ←⊂= 𝜖 ∧ CnØ(𝜖, 𝜉 ′ 〈𝜇, 𝜇〉 𝜂)

St

5. The St � Cn case when the Cn’ee does not appear across the St’ee

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940

60 Yotam Dvir, Ohad Kammar, and Ori Lahav

𝛼 𝜉
(
𝜉 ′] {𝜈, 𝜖}

) (
𝜂] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉
(
𝜉 ′] {𝜈, 𝜖}

)
〈𝜇] {𝜈, 𝜖}, 𝜇] {𝜈, 𝜖}〉

(
𝜂] {𝜈, 𝜖}

)
𝜔

(
𝛼 𝜉

(
𝜉 ′] {𝜈}

) (
𝜂] {𝜈}

)
𝜔
)
[↑𝜖]

(
𝛼 𝜉

(
𝜉 ′] {𝜈}

)
〈𝜇] {𝜈}, 𝜇] {𝜈}〉

(
𝜂] {𝜈}

)
𝜔
)
[↑𝜖]

St

Cn
𝜈 ←⊂= 𝜖 ∧ CnØ(𝜖, 𝜉)

Cn

𝜈 ←⊂= 𝜖 ∧ CnØ(𝜖, 𝜉)

St

6. The St � Cn case when the Cn’ee appears across the St’ee

𝛼 𝜉 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂
(
𝜂′] {𝜖}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜃〉 𝜂
(
𝜂′] {𝜖}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂
(
𝜂′] {𝜈}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜃〉 𝜂
(
𝜂′] {𝜈}

)
𝜔

Mu

Ls
𝜈 ≤vw 𝜖 ∧ LsØ(𝜈, 𝜂′)

Ls

𝜈 ≤vw 𝜖 ∧ LsØ(𝜈, 𝜂′)

Mu

7. The Mu � Ls case when the Ls’ee does not appear across the Mu’ee

𝛼 𝜉
(
𝜉 ′] {𝜖}

)
〈𝜇] {𝜖}, 𝜌] {𝜖}〉 〈𝜌] {𝜖}, 𝜃] {𝜖}〉

(
𝜂] {𝜖}

)
𝜔

𝛼 𝜉
(
𝜉 ′] {𝜖}

)
〈𝜇] {𝜖}, 𝜃] {𝜖}〉

(
𝜂] {𝜖}

)
𝜔

𝛼 𝜉
(
𝜉 ′] {𝜈}

)
〈𝜇] {𝜈}, 𝜌] {𝜈}〉 〈𝜌] {𝜈}, 𝜃] {𝜈}〉

(
𝜂] {𝜈}

)
𝜔

𝛼 𝜉
(
𝜉 ′] {𝜈}

)
〈𝜇] {𝜈}, 𝜃] {𝜈}〉

(
𝜂] {𝜈}

)
𝜔

Mu

Ls
𝜈 ≤vw 𝜖 ∧ LsØ(𝜈, 𝜉 ′ 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂)

Ls

𝜈 ≤vw 𝜖 ∧ LsØ(𝜈, 𝜉 ′ 〈𝜇, 𝜃〉 𝜂)

Mu

8. The Mu � Ls case when the Ls’ee appears across the Mu’ee

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989

A Denotational Approach to Release/Acquire Concurrency 61

𝛼 𝜉 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂
(
𝜂′]

{
𝜖𝜈.ii

})
𝜔

𝛼 𝜉 〈𝜇, 𝜃〉 𝜂
(
𝜂′]

{
𝜖𝜈.ii

})
𝜔

𝛼 𝜉 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂
(
𝜂′] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜃〉 𝜂
(
𝜂′] {𝜈, 𝜖}

)
𝜔

Mu

Ex
𝜈 ≤vw 𝜖 ∧ ExØ(𝜈, 𝜂′)

Ex

𝜈 ≤vw 𝜖 ∧ ExØ(𝜈, 𝜂′)

Mu

9. The Mu � Ex case when the Ex’ee does not appear across the Mu’ee

𝛼 𝜉
(
𝜉 ′]

{
𝜖𝜈.ii

}) 〈
𝜇]

{
𝜖𝜈.ii

}
, 𝜌]

{
𝜖𝜈.ii

}〉 〈
𝜌]

{
𝜖𝜈.ii

}
, 𝜃]

{
𝜖𝜈.ii

}〉 (
𝜂]

{
𝜖𝜈.ii

})
𝜔

𝛼 𝜉
(
𝜉 ′]

{
𝜖𝜈.ii

}) 〈
𝜇]

{
𝜖𝜈.ii

}
, 𝜃]

{
𝜖𝜈.ii

}〉 (
𝜂]

{
𝜖𝜈.ii

})
𝜔

𝛼 𝜉
(
𝜉 ′] {𝜈, 𝜖}

)
〈𝜇] {𝜈, 𝜖}, 𝜌] {𝜈, 𝜖}〉 〈𝜌] {𝜈, 𝜖}, 𝜃] {𝜈, 𝜖}〉

(
𝜂] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉
(
𝜉 ′] {𝜈, 𝜖}

)
〈𝜇] {𝜈, 𝜖}, 𝜃] {𝜈, 𝜖}〉

(
𝜂] {𝜈, 𝜖}

)
𝜔

Mu

Ex
𝜈 ≤vw 𝜖 ∧ LsØ(𝜈, 𝜉 ′ 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂)

Ex

𝜈 ≤vw 𝜖 ∧ LsØ(𝜈, 𝜉 ′ 〈𝜇, 𝜃〉 𝜂)

Mu

10. The Mu � Ex case when the Ex’ee appears across the Mu’ee

𝛼 𝜉 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂
(
𝜂′] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜃〉 𝜂
(
𝜂′] {𝜈, 𝜖}

)
𝜔

(
𝛼 𝜉 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂

(
𝜂′] {𝜈}

)
𝜔
)
[↑𝜖]

(
𝛼 𝜉 〈𝜇, 𝜃〉 𝜂

(
𝜂′] {𝜈}

)
𝜔
)
[↑𝜖]

Mu

Cn
𝜈 ←⊂= 𝜖 ∧ CnØ(𝜖, 𝜉 ′ 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂)

Cn

𝜈 ←⊂= 𝜖 ∧ CnØ(𝜖, 𝜉 ′ 〈𝜇, 𝜃〉 𝜂)

Mu

11. The Mu � Cn case when the Cn’ee does not appear across the Mu’ee

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038

62 Yotam Dvir, Ohad Kammar, and Ori Lahav

𝛼 𝜉
(
𝜉 ′] {𝜈, 𝜖}

)
〈𝜇] {𝜈, 𝜖}, 𝜌] {𝜈, 𝜖}〉 〈𝜌] {𝜈, 𝜖}, 𝜃] {𝜈, 𝜖}〉

(
𝜂] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉
(
𝜉 ′] {𝜈, 𝜖}

)
〈𝜇] {𝜈, 𝜖}, 𝜃] {𝜈, 𝜖}〉

(
𝜂] {𝜈, 𝜖}

)
𝜔

(
𝛼 𝜉

(
𝜉 ′] {𝜈}

)
〈𝜇] {𝜈}, 𝜌] {𝜈}〉 〈𝜌] {𝜈}, 𝜃] {𝜈}〉

(
𝜂] {𝜈}

)
𝜔
)
[↑𝜖]

(
𝛼 𝜉

(
𝜉 ′] {𝜈}

)
〈𝜇] {𝜈}, 𝜃] {𝜈}〉

(
𝜂] {𝜈}

)
𝜔
)
[↑𝜖]

Mu

Cn
𝜈 ←⊂= 𝜖 ∧ CnØ(𝜖, 𝜉)

Cn

𝜈 ←⊂= 𝜖 ∧ CnØ(𝜖, 𝜉)

Mu

12. The Mu � Cn case when the Cn’ee appears across the Mu’ee

𝛼 𝜉
(
𝜂] {𝜖}

)
𝜅

𝛼 𝜉
(
𝜂] {𝜖}

)
𝜔

𝛼 𝜉
(
𝜂] {𝜈}

)
𝜅

𝛼 𝜉
(
𝜂] {𝜈}

)
𝜔

Fw
𝜅 ≤ 𝜔

Ls
𝜈 ≤vw 𝜖 ∧ LsØ(𝜈, 𝜂)

Ls

𝜈 ≤vw 𝜖 ∧ LsØ(𝜈, 𝜂)

𝜅 ≤ 𝜔
Fw

13. The Fw � Ls case

𝜅 𝜉
(
𝜂] {𝜖}

)
𝜔

𝛼 𝜉
(
𝜂] {𝜖}

)
𝜔

𝜅 𝜉
(
𝜂] {𝜈}

)
𝜔

𝛼 𝜉
(
𝜂] {𝜈}

)
𝜔

Rw
𝛼 ≤ 𝜅

Ls
𝜈 ≤vw 𝜖 ∧ LsØ(𝜈, 𝜂)

Ls

𝜈 ≤vw 𝜖 ∧ LsØ(𝜈, 𝜂)

𝛼 ≤ 𝜅
Rw

14. The Rw � Ls case

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087

A Denotational Approach to Release/Acquire Concurrency 63

𝛼 𝜉
(
𝜂]

{
𝜖𝜈.ii

})
𝜅

𝛼 𝜉
(
𝜂]

{
𝜖𝜈.ii

})
𝜔

𝛼 𝜉
(
𝜂] {𝜈, 𝜖}

)
𝜅

𝛼 𝜉
(
𝜂] {𝜈, 𝜖}

)
𝜔

Fw
𝜅 ≤ 𝜔

Ex
𝜈 ≤vw 𝜖 ∧ ExØ(𝜈, 𝜂)

Ex

𝜈 ≤vw 𝜖 ∧ ExØ(𝜈, 𝜂)

𝜅 ≤ 𝜔
Fw

15. The Fw � Ex case

𝜅 𝜉
(
𝜂]

{
𝜖𝜈.ii

})
𝜔

𝛼 𝜉
(
𝜂]

{
𝜖𝜈.ii

})
𝜔

𝜅 𝜉
(
𝜂] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉
(
𝜂] {𝜈, 𝜖}

)
𝜔

Rw
𝛼 ≤ 𝜅

Ex
𝜈 ≤vw 𝜖 ∧ ExØ(𝜈, 𝜂)

Ex

𝜈 ≤vw 𝜖 ∧ ExØ(𝜈, 𝜂)

𝛼 ≤ 𝜅
Rw

16. The Rw � Ex case

𝛼 𝜉
(
𝜂] {𝜈, 𝜖}

)
𝜅

𝛼 𝜉
(
𝜂] {𝜈, 𝜖}

)
𝜔

(
𝛼 𝜉

(
𝜂] {𝜈}

)
𝜅
)
[↑𝜖]

(
𝛼 𝜉

(
𝜂] {𝜈}

)
𝜔
)
[↑𝜖]

Fw
𝜅 ≤ 𝜔

Cn
𝜈 ←⊂= 𝜖 ∧ CnØ(𝜖, 𝜉)

Cn

𝜈 ←⊂= 𝜖 ∧ CnØ(𝜖, 𝜉)

𝜅 ≤ 𝜔
Fw

17. The Fw � Cn case

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136

64 Yotam Dvir, Ohad Kammar, and Ori Lahav

𝜅 𝜉
(
𝜂] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉
(
𝜂] {𝜈, 𝜖}

)
𝜔

(
𝜅 𝜉

(
𝜂] {𝜈}

)
𝜔
)
[↑𝜖]

(
𝛼 𝜉

(
𝜂] {𝜈}

)
𝜔
)
[↑𝜖]

Rw
𝛼 ≤ 𝜅

Cn
𝜈 ←⊂= 𝜖 ∧ CnØ(𝜖, 𝜉)

Cn

𝜈 ←⊂= 𝜖 ∧ CnØ(𝜖, 𝜉)

𝛼 ≤ 𝜅
Rw

18. The Rw � Cn case

𝛼 𝜉 〈𝜇, 𝜌] {𝜈}〉
(
𝜂] {𝜈}

) (
𝜂′] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜌] {𝜖}〉
(
𝜂] {𝜖}

) (
𝜂′] {𝜖, 𝜖}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜌] {𝜈}〉
(
𝜂] {𝜈}

) (
𝜂′] {𝜈, 𝜈}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜌] {𝜖}〉
(
𝜂] {𝜖}

) (
𝜂′] {𝜖, 𝜈}

)
𝜔

Ti
𝜈 ≤vw 𝜖

Ls
𝜈 ≤vw 𝜖 ∧ LsØ

(
𝜈, 𝜂′] {𝜈}

)

Ls

𝜈 ≤vw 𝜖 ∧ LsØ
(
𝜈, 𝜂′] {𝜖}

)
𝜈 ≤vw 𝜖

Ti

19. The Ti � Ls case when the Ls’ee appears after the Ti’ee

𝛼 𝜉
(
𝜉 ′] {𝜖}

)
〈𝜇] {𝜖}, 𝜌] {𝜈, 𝜖}〉 𝜂] {𝜈, 𝜖} 𝜔

𝛼 𝜉
(
𝜉 ′] {𝜖}

)
〈𝜇] {𝜖}, 𝜌] {𝜖, 𝜖}〉 𝜂] {𝜖, 𝜖} 𝜔

𝛼 𝜉
(
𝜉 ′] {𝜈}

)
〈𝜇] {𝜈}, 𝜌] {𝜈, 𝜈}〉 𝜂] {𝜈, 𝜈} 𝜔

𝛼 𝜉
(
𝜉 ′] {𝜈}

)
〈𝜇] {𝜈}, 𝜌] {𝜖, 𝜈}〉 𝜂] {𝜖, 𝜈} 𝜔

Ti
𝜈 ≤vw 𝜖

Ls
𝜈 ≤vw 𝜖 ∧ LsØ

(
𝜈, 𝜉 ′ 〈𝜇, 𝜌] {𝜈}〉 𝜂] {𝜈}

)

Ls

𝜈 ≤vw 𝜖 ∧ LsØ
(
𝜈, 𝜉 ′ 〈𝜇, 𝜌] {𝜖}〉 𝜂] {𝜖}

)
𝜈 ≤vw 𝜖

Ti

20. The Ti � Ls case when the Ls’ee appears before the Ti’ee

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

A Denotational Approach to Release/Acquire Concurrency 65

𝛼 𝜉 〈𝜇, 𝜌] {𝜈}〉
(
𝜂] {𝜈}

) (
𝜂′]

{
𝜈, 𝜖𝜈.ii

})
𝜔

𝛼 𝜉 〈𝜇, 𝜌] {𝜖}〉
(
𝜂] {𝜖}

) (
𝜂′]

{
𝜖, 𝜖𝜈.ii

})
𝜔

𝛼 𝜉 〈𝜇, 𝜌] {𝜈}〉
(
𝜂] {𝜈}

) (
𝜂′] {𝜈, 𝜈, 𝜖}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜌] {𝜖}〉
(
𝜂] {𝜖}

) (
𝜂′] {𝜖, 𝜈, 𝜖}

)
𝜔

Ti
𝜈 ≤vw 𝜖

Ex
𝜈 ≤vw 𝜖 ∧ ExØ

(
𝜈, 𝜂′] {𝜈}

)

Ex

𝜈 ≤vw 𝜖 ∧ ExØ
(
𝜈, 𝜂′] {𝜖}

)
𝜈 ≤vw 𝜖

Ti

21. The Ti � Ex case when the Ex’ee appears after the Ti’ee

𝛼 𝜉
(
𝜉 ′]

{
𝜖𝜈.ii

}) 〈
𝜇]

{
𝜖𝜈.ii

}
, 𝜌]

{
𝜈, 𝜖𝜈.ii

}〉
𝜂]

{
𝜈, 𝜖𝜈.ii

}
𝜔

𝛼 𝜉
(
𝜉 ′]

{
𝜖𝜈.ii

}) 〈
𝜇]

{
𝜖𝜈.ii

}
, 𝜌]

{
𝜖, 𝜖𝜈.ii

}〉
𝜂]

{
𝜖, 𝜖𝜈.ii

}
𝜔

𝛼 𝜉
(
𝜉 ′] {𝜈, 𝜖}

)
〈𝜇] {𝜈, 𝜖}, 𝜌] {𝜈, 𝜈, 𝜖}〉 𝜂] {𝜈, 𝜈, 𝜖} 𝜔

𝛼 𝜉
(
𝜉 ′] {𝜈, 𝜖}

)
〈𝜇] {𝜈, 𝜖}, 𝜌] {𝜖, 𝜈, 𝜖}〉 𝜂] {𝜖, 𝜈, 𝜖} 𝜔

Ti
𝜈 ≤vw 𝜖

Ex
𝜈 ≤vw 𝜖 ∧ ExØ

(
𝜈, 𝜉 ′ 〈𝜇, 𝜌] {𝜈}〉 𝜂] {𝜈}

)

Ex

𝜈 ≤vw 𝜖 ∧ ExØ
(
𝜈, 𝜉 ′ 〈𝜇, 𝜌] {𝜖}〉 𝜂] {𝜖}

)
𝜈 ≤vw 𝜖

Ti

22. The Ti � Ex case when the Ex’ee appears before the Ti’ee

𝛼 𝜉 〈𝜇, 𝜌] {𝜈}〉
(
𝜂] {𝜈}

) (
𝜂′] {𝜈, 𝜈, 𝜖}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜌] {𝜖}〉
(
𝜂] {𝜖}

) (
𝜂′] {𝜖, 𝜈, 𝜖}

)
𝜔

(
𝛼 𝜉 〈𝜇, 𝜌] {𝜈}〉

(
𝜂] {𝜈}

) (
𝜂′] {𝜈, 𝜈}

)
𝜔
)
[↑𝜖]

(
𝛼 𝜉 〈𝜇, 𝜌] {𝜖}〉

(
𝜂] {𝜖}

) (
𝜂′] {𝜖, 𝜈}

)
𝜔
)
[↑𝜖]

Ti
𝜈 ≤vw 𝜖

Cn
𝜈 ←⊂= 𝜖 ∧ CnØ

(
𝜖, 𝜉 〈𝜇, 𝜌] {𝜈}〉 𝜂] {𝜈}

)

Cn

𝜈 ←⊂= 𝜖 ∧ CnØ
(
𝜖, 𝜉 〈𝜇, 𝜌] {𝜖}〉 𝜂] {𝜖}

)
𝜈 [↑𝜖] ≤vw 𝜖 [↑𝜖]

Ti

23. The Ti � Cn case when the Cn’ee appears after the Ti’ee, and the Ti’ee is not the Cn’er

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234

66 Yotam Dvir, Ohad Kammar, and Ori Lahav

𝛼 𝜉 〈𝜇, 𝜌] {𝜈}〉
(
𝜂] {𝜈}

) (
𝜂′] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜌] {𝜖}〉
(
𝜂] {𝜖}

) (
𝜂′] {𝜖, 𝜖}

)
𝜔

(
𝛼 𝜉 〈𝜇, 𝜌] {𝜈}〉

(
𝜂] {𝜈}

) (
𝜂′] {𝜈}

)
𝜔
)
[↑𝜖]

(
𝛼 𝜉 〈𝜇, 𝜌] {𝜖}〉

(
𝜂] {𝜖}

) (
𝜂′] {𝜖}

)
𝜔
)
[↑𝜖]

Ti
𝜈 ≤vw 𝜖

Cn
𝜈 ←⊂= 𝜖 ∧ CnØ

(
𝜖, 𝜉 〈𝜇, 𝜌] {𝜖}〉 𝜂] {𝜖}

)

Cn

𝜖 ←⊂= 𝜖 ∧ CnØ
(
𝜖, 𝜉 〈𝜇, 𝜌] {𝜖}〉 𝜂] {𝜖}

)
𝜈 [↑𝜖] ≤vw 𝜖 [↑𝜖]

Ti

24. The Ti � Cn case when the Cn’ee appears after the Ti’ee, and the Ti’ee is the Cn’er

𝛼 𝜉
(
𝜉 ′] {𝜈, 𝜖}

)
〈𝜇] {𝜈, 𝜖}, 𝜌] {𝜈, 𝜈, 𝜖}〉 𝜂] {𝜈, 𝜈, 𝜖} 𝜔

𝛼 𝜉
(
𝜉 ′] {𝜈, 𝜖}

)
〈𝜇] {𝜈, 𝜖}, 𝜌] {𝜖, 𝜈, 𝜖}〉 𝜂] {𝜖, 𝜈, 𝜖} 𝜔

(
𝛼 𝜉

(
𝜉 ′] {𝜈}

)
〈𝜇] {𝜈}, 𝜌] {𝜈, 𝜈}〉 𝜂] {𝜈, 𝜈} 𝜔

)
[↑𝜖]

(
𝛼 𝜉

(
𝜉 ′] {𝜈}

)
〈𝜇] {𝜈}, 𝜌] {𝜖, 𝜈}〉 𝜂] {𝜖, 𝜈} 𝜔

)
[↑𝜖]

Ti
𝜈 ≤vw 𝜖

Cn
𝜈 ←⊂= 𝜖 ∧ CnØ(𝜖, 𝜉)

Cn

𝜈 ←⊂= 𝜖 ∧ CnØ(𝜖, 𝜉)

𝜈 [↑𝜖] ≤vw 𝜖 [↑𝜖]
Ti

25. The Ti � Cn case when the Cn’ee appears before the Ti’ee

𝛼 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉
(
𝜂] {𝜈, 𝜖}

) (
𝜂′] {𝜈, 𝜖, 𝜖}

)
𝜔

𝛼 𝜉
〈
𝜇, 𝜌]

{
𝜖𝜈.ii

}〉 (
𝜂]

{
𝜖𝜈.ii

}) (
𝜂′]

{
𝜖𝜈.ii , 𝜖

})
𝜔

𝛼 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉
(
𝜂] {𝜈, 𝜖}

) (
𝜂′] {𝜈, 𝜖, 𝜈}

)
𝜔

𝛼 𝜉
〈
𝜇, 𝜌]

{
𝜖𝜈.ii

}〉 (
𝜂]

{
𝜖𝜈.ii

}) (
𝜂′]

{
𝜖𝜈.ii , 𝜈

})
𝜔

Ab
𝜈 ←⊂ 𝜖

Ls
𝜈 ≤vw 𝜖 ∧ LsØ

(
𝜈, 𝜂′] {𝜈, 𝜖}

)

Ls

𝜈 ≤vw 𝜖 ∧ LsØ
(
𝜈, 𝜂′]

{
𝜖𝜈.ii

})
𝜈 ←⊂ 𝜖
Ab

26. The Ab � Ls case when the Ls’ee appears after the Ab’ee

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283

A Denotational Approach to Release/Acquire Concurrency 67

𝛼 𝜉
(
𝜉 ′] {𝜖}

)
〈𝜇] {𝜖}, 𝜌] {𝜈, 𝜖, 𝜖}〉 𝜂] {𝜈, 𝜖, 𝜖} 𝜔

𝛼 𝜉
(
𝜉 ′] {𝜖}

) 〈
𝜇] {𝜖}, 𝜌]

{
𝜖𝜈.ii , 𝜖

}〉
𝜂]

{
𝜖𝜈.ii , 𝜖

}
𝜔

𝛼 𝜉
(
𝜉 ′] {𝜈}

)
〈𝜇] {𝜈}, 𝜌] {𝜈, 𝜖, 𝜈}〉 𝜂] {𝜈, 𝜖, 𝜈} 𝜔

𝛼 𝜉
(
𝜉 ′] {𝜈}

) 〈
𝜇] {𝜈}, 𝜌]

{
𝜖𝜈.ii , 𝜈

}〉
𝜂]

{
𝜖𝜈.ii , 𝜈

}
𝜔

Ab
𝜈 ←⊂ 𝜖

Ls
𝜈 ≤vw 𝜖 ∧ LsØ

(
𝜈, 𝜉 ′ 〈𝜇, 𝜌] {𝜈, 𝜖}〉 𝜂] {𝜈, 𝜖}

)

Ls

𝜈 ≤vw 𝜖 ∧ LsØ
(
𝜈, 𝜉 ′

〈
𝜇, 𝜌]

{
𝜖𝜈.ii

}〉
𝜂]

{
𝜖𝜈.ii

})
𝜈 ←⊂ 𝜖
Ab

27. The Ab � Ls case when the Ls’ee appears before the Ab’ee

𝛼 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉
(
𝜂] {𝜈, 𝜖}

) (
𝜂′]

{
𝜈, 𝜖, 𝜖𝜈.ii

})
𝜔

𝛼 𝜉
〈
𝜇, 𝜌]

{
𝜖𝜈.ii

}〉 (
𝜂]

{
𝜖𝜈.ii

}) (
𝜂′]

{
𝜖𝜈.ii , 𝜖𝜈.ii

})
𝜔

𝛼 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉
(
𝜂] {𝜈, 𝜖}

) (
𝜂′] {𝜈, 𝜖, 𝜈, 𝜖}

)
𝜔

𝛼 𝜉
〈
𝜇, 𝜌]

{
𝜖𝜈.ii

}〉 (
𝜂]

{
𝜖𝜈.ii

}) (
𝜂′]

{
𝜖𝜈.ii , 𝜈, 𝜖

})
𝜔

Ab
𝜈 ←⊂ 𝜖

Ex
𝜈 ≤vw 𝜖 ∧ ExØ

(
𝜈, 𝜂′] {𝜈, 𝜖}

)

Ex

𝜈 ≤vw 𝜖 ∧ ExØ
(
𝜈, 𝜂′]

{
𝜖𝜈.ii

})
𝜈 ←⊂ 𝜖
Ab

28. The Ab � Ex case when the Ex’ee appears after the Ab’ee

𝛼 𝜉
(
𝜉 ′]

{
𝜖𝜈.ii

}) 〈
𝜇]

{
𝜖𝜈.ii

}
, 𝜌]

{
𝜈, 𝜖, 𝜖𝜈.ii

}〉
𝜂]

{
𝜈, 𝜖, 𝜖𝜈.ii

}
𝜔

𝛼 𝜉
(
𝜉 ′]

{
𝜖𝜈.ii

}) 〈
𝜇]

{
𝜖𝜈.ii

}
, 𝜌]

{
𝜖𝜈.ii , 𝜖𝜈.ii

}〉
𝜂]

{
𝜖𝜈.ii , 𝜖𝜈.ii

}
𝜔

𝛼 𝜉
(
𝜉 ′] {𝜈, 𝜖}

)
〈𝜇] {𝜈, 𝜖}, 𝜌] {𝜈, 𝜖, 𝜈, 𝜖}〉 𝜂] {𝜈, 𝜖, 𝜈, 𝜖} 𝜔

𝛼 𝜉
(
𝜉 ′] {𝜈, 𝜖}

) 〈
𝜇] {𝜈, 𝜖}, 𝜌]

{
𝜖𝜈.ii , 𝜈, 𝜖

}〉
𝜂]

{
𝜖𝜈.ii , 𝜈, 𝜖

}
𝜔

Ab
𝜈 ←⊂ 𝜖

Ex
𝜈 ≤vw 𝜖 ∧ ExØ

(
𝜈, 𝜉 ′ 〈𝜇, 𝜌] {𝜈, 𝜖}〉 𝜂] {𝜈, 𝜖}

)

Ex

𝜈 ≤vw 𝜖 ∧ ExØ
(
𝜈, 𝜉 ′

〈
𝜇, 𝜌]

{
𝜖𝜈.ii

}〉
𝜂]

{
𝜖𝜈.ii

})
𝜈 ←⊂ 𝜖
Ab

29. The Ab � Ex case when the Ex’ee appears before the Ab’ee

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332

68 Yotam Dvir, Ohad Kammar, and Ori Lahav

𝛼 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉
(
𝜂] {𝜈, 𝜖}

) (
𝜂′] {𝜈, 𝜖, 𝜈, 𝜖}

)
𝜔

𝛼 𝜉
〈
𝜇, 𝜌]

{
𝜖𝜈.ii

}〉 (
𝜂]

{
𝜖𝜈.ii

}) (
𝜂′]

{
𝜖𝜈.ii , 𝜈, 𝜖

})
𝜔

(
𝛼 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉

(
𝜂] {𝜈, 𝜖}

) (
𝜂′] {𝜈, 𝜖, 𝜈}

)
𝜔
)
[↑𝜖]

(
𝛼 𝜉

〈
𝜇, 𝜌]

{
𝜖𝜈.ii

}〉 (
𝜂]

{
𝜖𝜈.ii

}) (
𝜂′]

{
𝜖𝜈.ii , 𝜈

})
𝜔
)
[↑𝜖]

Ab
𝜈 ←⊂ 𝜖

Cn
𝜈 ←⊂= 𝜖 ∧ CnØ

(
𝜖, 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉 𝜂] {𝜈, 𝜖}

)

Cn

𝜈 ←⊂= 𝜖 ∧ CnØ
(
𝜖, 𝜉

〈
𝜇, 𝜌]

{
𝜈𝜖.ii

}〉
𝜂]

{
𝜈𝜖.ii

})
𝜈 [↑𝜖] ←⊂ 𝜖 [↑𝜖]

Ab

30. The Ab � Cn case when the Cn’ee appears after the Ab’er, and the Ab’er is not the Cn’er

𝛼 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉
(
𝜂] {𝜈, 𝜖}

) (
𝜂′] {𝜈, 𝜖, 𝜖}

)
𝜔

𝛼 𝜉
〈
𝜇, 𝜌]

{
𝜖𝜈.ii

}〉 (
𝜂]

{
𝜖𝜈.ii

}) (
𝜂′]

{
𝜖𝜈.ii , 𝜖

})
𝜔

(
𝛼 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉

(
𝜂] {𝜈, 𝜖}

) (
𝜂′] {𝜈, 𝜖}

)
𝜔
)
[↑𝜖]

(
𝛼 𝜉

〈
𝜇, 𝜌]

{
𝜖𝜈.ii

}〉 (
𝜂]

{
𝜖𝜈.ii

}) (
𝜂′]

{
𝜖𝜈.ii

})
𝜔
)
[↑𝜖]

Ab
𝜈 ←⊂ 𝜖

Cn
𝜖 ←⊂= 𝜖 ∧ CnØ

(
𝜖, 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉 𝜂] {𝜈, 𝜖}

)

Cn

𝜖𝜈.ii ←⊂= 𝜖 ∧ CnØ
(
𝜖, 𝜉

〈
𝜇, 𝜌]

{
𝜈𝜖.ii

}〉
𝜂]

{
𝜈𝜖.ii

})
𝜈 [↑𝜖] ←⊂ 𝜖 [↑𝜖]

Ab

31. The Ab � Cn case when the Cn’ee appears after the Ab’er, and the Ab’er is the Cn’er

𝛼 𝜉
(
𝜉 ′] {𝜈, 𝜖}

)
〈𝜇] {𝜈, 𝜖}, 𝜌] {𝜈, 𝜖, 𝜈, 𝜖}〉 𝜂] {𝜈, 𝜖, 𝜈, 𝜖} 𝜔

𝛼 𝜉
(
𝜉 ′] {𝜈, 𝜖}

) 〈
𝜇] {𝜈, 𝜖}, 𝜌]

{
𝜖𝜈.ii , 𝜈, 𝜖

}〉
𝜂]

{
𝜖𝜈.ii , 𝜈, 𝜖

}
𝜔

(
𝛼 𝜉

(
𝜉 ′] {𝜈}

)
〈𝜇] {𝜈}, 𝜌] {𝜈, 𝜖, 𝜈}〉 𝜂] {𝜈, 𝜖, 𝜈} 𝜔

)
[↑𝜖]

(
𝛼 𝜉

(
𝜉 ′] {𝜈}

) 〈
𝜇] {𝜈}, 𝜌]

{
𝜖𝜈.ii , 𝜈

}〉
𝜂]

{
𝜖𝜈.ii , 𝜈

}
𝜔
)
[↑𝜖]

Ab
𝜈 ←⊂ 𝜖

Cn
𝜈 ←⊂= 𝜖 ∧ CnØ(𝜖, 𝜉)

Cn

𝜈 ←⊂= 𝜖 ∧ CnØ(𝜖, 𝜉)

𝜈 [↑𝜖] ←⊂ 𝜖 [↑𝜖]
Ab

32. The Ab � Cn case when the Cn’ee appears before the Ab’er

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381

A Denotational Approach to Release/Acquire Concurrency 69

(
𝛼 𝜉 〈𝜇, 𝜌] {𝜈}〉

(
𝜂] {𝜈}

) (
𝜂′] {𝜈, 𝜖}

)
𝜔
)
[↑𝜖]

𝛼 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉
(
𝜂] {𝜈, 𝜖}

) (
𝜂′] {𝜈, 𝜖, 𝜖}

)
𝜔

(
𝛼 𝜉 〈𝜇, 𝜌] {𝜈}〉

(
𝜂] {𝜈}

) (
𝜂′] {𝜈, 𝜈}

)
𝜔
)
[↑𝜖]

𝛼 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉
(
𝜂] {𝜈, 𝜖}

) (
𝜂′] {𝜈, 𝜖, 𝜈}

)
𝜔

Di
𝜈 ←⊂= 𝜖

Ls
𝜈 [↑𝜖] ≤vw 𝜖 [↑𝜖] ∧ LsØ

(
𝜈 [↑𝜖] ,

(
𝜂′] {𝜈}

)
[↑𝜖]

)

Ls

𝜈 ≤vw 𝜖 ∧ LsØ
(
𝜈, 𝜂′] {𝜈, 𝜖}

)
𝜈 ←⊂= 𝜖

Di

33. The Di � Ls case when the Ls’ee appears after the Di’ee

(
𝛼 𝜉

(
𝜉 ′] {𝜖}

)
〈𝜇] {𝜖}, 𝜌] {𝜈, 𝜖}〉 𝜂] {𝜈, 𝜖} 𝜔

)
[↑𝜖]

𝛼 𝜉
(
𝜉 ′] {𝜖}

)
〈𝜇] {𝜖}, 𝜌] {𝜈, 𝜖, 𝜖}〉 𝜂] {𝜈, 𝜖, 𝜖} 𝜔

(
𝛼 𝜉

(
𝜉 ′] {𝜈}

)
〈𝜇] {𝜈}, 𝜌] {𝜈, 𝜈}〉 𝜂] {𝜈, 𝜈} 𝜔

)
[↑𝜖]

𝛼 𝜉
(
𝜉 ′] {𝜈}

)
〈𝜇] {𝜈}, 𝜌] {𝜈, 𝜖, 𝜈}〉 𝜂] {𝜈, 𝜖, 𝜈} 𝜔

Di
𝜈 ←⊂= 𝜖

Ls
𝜈 [↑𝜖] ≤vw 𝜖 [↑𝜖] ∧ LsØ

(
𝜈 [↑𝜖] ,

(
𝜉 ′ 〈𝜇, 𝜌] {𝜈}〉 𝜂] {𝜈}

)
[↑𝜖]

)

Ls

𝜈 ≤vw 𝜖 ∧ LsØ
(
𝜈, 𝜉 ′ 〈𝜇, 𝜌] {𝜈, 𝜖}〉 𝜂] {𝜈, 𝜖}

)
𝜈 ←⊂= 𝜖

Di

34. The Di � Ls case when the Ls’ee appears before the Di’ee, and the Di’er is not the Ls’ee

(
𝛼 𝜉

(
𝜉 ′] {𝜖}

)
〈𝜇] {𝜖}, 𝜌] {𝜖}〉 𝜂] {𝜖} 𝜔

)
[↑𝜖]

𝛼 𝜉
(
𝜉 ′] {𝜖}

)
〈𝜇] {𝜖}, 𝜌] {𝜖, 𝜖}〉 𝜂] {𝜖, 𝜖} 𝜔

(
𝛼 𝜉

(
𝜉 ′] {𝜈}

)
〈𝜇] {𝜈}, 𝜌] {𝜈}〉 𝜂] {𝜈} 𝜔

)
[↑𝜖]

𝛼 𝜉
(
𝜉 ′] {𝜈}

)
〈𝜇] {𝜈}, 𝜌] {𝜖, 𝜈}〉 𝜂] {𝜖, 𝜈} 𝜔

Di
𝜖 ←⊂= 𝜖

Ls
𝜈 [↑𝜖] ≤vw 𝜖 [↑𝜖] ∧ LsØ(𝜈 [↑𝜖] , (𝜉 ′ 〈𝜇, 𝜌〉 𝜂) [↑𝜖])

Ls

𝜈 ≤vw 𝜖 ∧ LsØ
(
𝜈, 𝜉 ′ 〈𝜇, 𝜌] {𝜖}〉 𝜂] {𝜖}

)
𝜈 ←⊂= 𝜖

Di

35. The Di � Ls case when the Ls’ee appears before the Di’ee, and the Di’er is the Ls’ee

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430

70 Yotam Dvir, Ohad Kammar, and Ori Lahav

(
𝛼 𝜉 〈𝜇, 𝜌] {𝜈}〉

(
𝜂] {𝜈}

) (
𝜂′]

{
𝜈, 𝜖𝜈.ii

})
𝜔
)
[↑𝜖]

𝛼 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉
(
𝜂] {𝜈, 𝜖}

) (
𝜂′]

{
𝜈, 𝜖, 𝜖𝜈.ii

})
𝜔

(
𝛼 𝜉 〈𝜇, 𝜌] {𝜈}〉

(
𝜂] {𝜈}

) (
𝜂′] {𝜈, 𝜈, 𝜖}

)
𝜔
)
[↑𝜖]

𝛼 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉
(
𝜂] {𝜈, 𝜖}

) (
𝜂′] {𝜈, 𝜖, 𝜈, 𝜖}

)
𝜔

Di
𝜈 ←⊂= 𝜖

Ex
𝜈 [↑𝜖] ≤vw 𝜖 [↑𝜖] ∧ ExØ

(
𝜈 [↑𝜖] ,

(
𝜂′] {𝜈}

)
[↑𝜖]

)

Ex

𝜈 ≤vw 𝜖 ∧ ExØ
(
𝜈, 𝜂′] {𝜈, 𝜖}

)
𝜈 ←⊂= 𝜖

Di

36. The Di � Ex case when the Ex’er appears after the Di’ee

(
𝛼 𝜉

(
𝜉 ′]

{
𝜖𝜈.ii

}) 〈
𝜇]

{
𝜖𝜈.ii

}
, 𝜌]

{
𝜈, 𝜖𝜈.ii

}〉
𝜂]

{
𝜈, 𝜖𝜈.ii

}
𝜔
)
[↑𝜖]

𝛼 𝜉
(
𝜉 ′]

{
𝜖𝜈.ii

}) 〈
𝜇]

{
𝜖𝜈.ii

}
, 𝜌]

{
𝜈, 𝜖, 𝜖𝜈.ii

}〉
𝜂]

{
𝜈, 𝜖, 𝜖𝜈.ii

}
𝜔

(
𝛼 𝜉

(
𝜉 ′] {𝜈, 𝜖}

)
〈𝜇] {𝜈, 𝜖}, 𝜌] {𝜈, 𝜈, 𝜖}〉 𝜂] {𝜈, 𝜈, 𝜖} 𝜔

)
[↑𝜖]

𝛼 𝜉
(
𝜉 ′] {𝜈, 𝜖}

)
〈𝜇] {𝜈, 𝜖}, 𝜌] {𝜈, 𝜖, 𝜈, 𝜖}〉 𝜂] {𝜈, 𝜖, 𝜈, 𝜖} 𝜔

Di
𝜈 ←⊂= 𝜖

Ex
𝜈 [↑𝜖] ≤vw 𝜖 [↑𝜖] ∧ ExØ

(
𝜈 [↑𝜖] ,

(
𝜉 ′ 〈𝜇, 𝜌] {𝜈}〉 𝜂] {𝜈}

)
[↑𝜖]

)

Ex

𝜈 ≤vw 𝜖 ∧ ExØ
(
𝜈, 𝜉 ′ 〈𝜇, 𝜌] {𝜈, 𝜖}〉 𝜂] {𝜈, 𝜖}

)
𝜈 ←⊂= 𝜖

Di

37. The Di � Ex case when the Ex’er appears before the Di’ee, and the Di’er is not the Ex’er

(
𝛼 𝜉

(
𝜉 ′]

{
𝜖𝜈.ii

}) 〈
𝜇]

{
𝜖𝜈.ii

}
, 𝜌]

{
𝜖𝜈.ii

}〉
𝜂]

{
𝜖𝜈.ii

}
𝜔
)
[↑𝜖]

𝛼 𝜉
(
𝜉 ′]

{
𝜖𝜈.ii

}) 〈
𝜇]

{
𝜖𝜈.ii

}
, 𝜌]

{
𝜖, 𝜖𝜈.ii

}〉
𝜂]

{
𝜖, 𝜖𝜈.ii

}
𝜔

(
𝛼 𝜉

(
𝜉 ′] {𝜈, 𝜖}

)
〈𝜇] {𝜈, 𝜖}, 𝜌] {𝜈, 𝜖}〉 𝜂] {𝜈, 𝜖} 𝜔

)
[↑𝜖]

𝛼 𝜉
(
𝜉 ′] {𝜈, 𝜖}

)
〈𝜇] {𝜈, 𝜖}, 𝜌] {𝜖, 𝜈, 𝜖}〉 𝜂] {𝜖, 𝜈, 𝜖} 𝜔

Di
𝜖 ←⊂= 𝜖

Ex
𝜈 [↑𝜖] ≤vw 𝜖 [↑𝜖] ∧ ExØ(𝜈 [↑𝜖] , (𝜉 ′ 〈𝜇, 𝜌〉 𝜂) [↑𝜖])

Ex

𝜈 ≤vw 𝜖 ∧ ExØ
(
𝜈, 𝜉 ′ 〈𝜇, 𝜌] {𝜖}〉 𝜂] {𝜖}

)
𝜈 ←⊂= 𝜖

Di

38. The Di � Ex case when the Ex’er appears before the Di’ee, and the Di’er is the Ex’er

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479

A Denotational Approach to Release/Acquire Concurrency 71

(
𝛼 𝜉 〈𝜇, 𝜌] {𝜈}〉

(
𝜂] {𝜈}

) (
𝜂′] {𝜈, 𝜈, 𝜖}

)
𝜔
)
[↑𝜖]

𝛼 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉
(
𝜂] {𝜈, 𝜖}

) (
𝜂′] {𝜈, 𝜖, 𝜈, 𝜖}

)
𝜔

((
𝛼 𝜉 〈𝜇, 𝜌] {𝜈}〉

(
𝜂] {𝜈}

) (
𝜂′] {𝜈, 𝜈}

)
𝜔
)
[↑𝜖]

)
[↑𝜖 [↑𝜖]]

(
𝛼 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉

(
𝜂] {𝜈, 𝜖}

) (
𝜂′] {𝜈, 𝜖, 𝜈}

)
𝜔
)
[↑𝜖]

Di
𝜈 ←⊂= 𝜖

Cn
𝜈 [↑𝜖] ←⊂= 𝜖 [↑𝜖] ∧ CnØ

(
𝜖 [↑𝜖] , 𝜉 〈𝜇, 𝜌] {𝜈}〉 𝜂] {𝜈}

)

Cn

𝜈 ←⊂= 𝜖 ∧ CnØ
(
𝜖, 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉 𝜂] {𝜈, 𝜖}

)
𝜈 [↑𝜖] ←⊂= 𝜖 [↑𝜖]

Di

39. The Di � Cn case when the Cn’ee appears after the Di’ee, and the Di’ee is not the Cn’er

(
𝛼 𝜉

(
𝜉 ′] {𝜈, 𝜖}

)
〈𝜇] {𝜈, 𝜖}, 𝜌] {𝜈, 𝜈, 𝜖}〉 𝜂] {𝜈, 𝜈, 𝜖} 𝜔

)
[↑𝜖]

𝛼 𝜉
(
𝜉 ′] {𝜈, 𝜖}

)
〈𝜇] {𝜈, 𝜖}, 𝜌] {𝜈, 𝜖, 𝜈, 𝜖}〉 𝜂] {𝜈, 𝜖, 𝜈, 𝜖} 𝜔

((
𝛼 𝜉

(
𝜉 ′] {𝜈}

)
〈𝜇] {𝜈}, 𝜌] {𝜈, 𝜈}〉 𝜂] {𝜈, 𝜈} 𝜔

)
[↑𝜖]

)
[↑𝜖 [↑𝜖]]

(
𝛼 𝜉

(
𝜉 ′] {𝜈}

)
〈𝜇] {𝜈}, 𝜌] {𝜈, 𝜖, 𝜈}〉 𝜂] {𝜈, 𝜖, 𝜈} 𝜔

)
[↑𝜖]

Di
𝜈 ←⊂= 𝜖

Cn
𝜈 [↑𝜖] ←⊂= 𝜖 [↑𝜖] ∧ CnØ(𝜖 [↑𝜖] , 𝜉 [↑𝜖])

Cn

𝜈 ←⊂= 𝜖 ∧ CnØ(𝜖, 𝜉)

𝜈 [↑𝜖] ←⊂= 𝜖 [↑𝜖]
Di

40. The Di � Cn case when the Cn’ee appears before the Di’ee, and the Di’er is not the Cn’ee

(
𝛼 𝜉 〈𝜇, 𝜌] {𝜈}〉

(
𝜂] {𝜈}

) (
𝜂′] {𝜈, 𝜖}

)
𝜔
)
[↑𝜖]

𝛼 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉
(
𝜂] {𝜈, 𝜖}

) (
𝜂′] {𝜈, 𝜖, 𝜖}

)
𝜔

((
𝛼 𝜉 〈𝜇, 𝜌] {𝜈}〉

(
𝜂] {𝜈}

) (
𝜂′] {𝜈}

)
𝜔
)
[↑𝜖]

)
[↑𝜖 [↑𝜖]]

(
𝛼 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉

(
𝜂] {𝜈, 𝜖}

) (
𝜂′] {𝜈, 𝜖}

)
𝜔
)
[↑𝜖]

Di
𝜈 ←⊂= 𝜖

Cn
𝜈 [↑𝜖] ←⊂= 𝜖 [↑𝜖] ∧ CnØ

(
𝜖 [↑𝜖] , 𝜉 〈𝜇, 𝜌] {𝜈}〉 𝜂] {𝜈}

)

Cn

𝜖 ←⊂= 𝜖 ∧ CnØ
(
𝜖, 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉 𝜂] {𝜈, 𝜖}

)
𝜈 [↑𝜖] ←⊂= 𝜖 [↑𝜖]

Di

41. The Di � Cn case when the Cn’ee appears after the Di’ee, and the Di’ee is the Cn’er

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528

72 Yotam Dvir, Ohad Kammar, and Ori Lahav

(
𝛼 𝜉

(
𝜉 ′] {𝜈, 𝜖}

)
〈𝜇] {𝜈, 𝜖}, 𝜌] {𝜈, 𝜖}〉 𝜂] {𝜈, 𝜖} 𝜔

)
[↑𝜖]

𝛼 𝜉
(
𝜉 ′] {𝜈, 𝜖}

)
〈𝜇] {𝜈, 𝜖}, 𝜌] {𝜖, 𝜈, 𝜖}〉 𝜂] {𝜖, 𝜈, 𝜖} 𝜔

((
𝛼 𝜉

(
𝜉 ′] {𝜈}

)
〈𝜇] {𝜈}, 𝜌] {𝜈}〉 𝜂] {𝜈} 𝜔

)
[↑𝜖]

)
[↑𝜖 [↑𝜖]]

(
𝛼 𝜉

(
𝜉 ′] {𝜈}

)
〈𝜇] {𝜈}, 𝜌] {𝜖, 𝜈}〉 𝜂] {𝜖, 𝜈} 𝜔

)
[↑𝜖]

Di
𝜖 ←⊂= 𝜖

Cn
𝜈 [↑𝜖] ←⊂= 𝜖 [↑𝜖] ∧ CnØ(𝜖 [↑𝜖] , 𝜉 [↑𝜖])

Cn

𝜈 ←⊂= 𝜖 ∧ CnØ(𝜖, 𝜉)

𝜈 [↑𝜖] ←⊂= 𝜖 [↑𝜖]
Di

42. The Di � Cn case when the Cn’ee appears before the Di’ee, and the Di’er is the Cn’ee

𝛼 𝜉𝜂 〈𝜇, 𝜌] {𝜈}〉
(
𝜂′] {𝜈}

)
𝜔

𝛼 𝜉𝜂 〈𝜇, 𝜌] {𝜖}〉
(
𝜂′] {𝜖}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜇〉 𝜂 〈𝜇, 𝜌] {𝜈}〉
(
𝜂′] {𝜈}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜇〉 𝜂 〈𝜇, 𝜌] {𝜖}〉
(
𝜂′] {𝜖}

)
𝜔

Ti
𝜈 ≤vw 𝜖

St
StØ(𝛼, 𝜇)

St

StØ(𝛼, 𝜇)

𝜈 ≤vw 𝜖

Ti

43. The Ti � St case when the Ti’ee does not appear across the St’ee

𝛼 𝜉 〈𝜇, 𝜌] {𝜈}〉
(
𝜉 ′] {𝜈}

) (
𝜂] {𝜈}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜌] {𝜖}〉
(
𝜉 ′] {𝜖}

) (
𝜂] {𝜖}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜌] {𝜈}〉
(
𝜉 ′] {𝜈}

)
〈𝜇] {𝜈}, 𝜇] {𝜈}〉

(
𝜂] {𝜈}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜌] {𝜖}〉
(
𝜉 ′] {𝜖}

)
〈𝜇] {𝜖}, 𝜇] {𝜖}〉

(
𝜂] {𝜖}

)
𝜔

Ti
𝜈 ≤vw 𝜖

St
StØ(𝛼, 𝜇] {𝜈})

St

StØ(𝛼, 𝜇] {𝜖})

𝜈 ≤vw 𝜖

Ti

44. The Ti � St case when the Ti’ee appears across the St’ee

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577

A Denotational Approach to Release/Acquire Concurrency 73

𝛼 𝜉𝜂 〈𝜇, 𝜌] {𝜈, 𝜖}〉
(
𝜂′] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉𝜂
〈
𝜇, 𝜌]

{
𝜖𝜈.ii

}〉 (
𝜂′]

{
𝜖𝜈.ii

})
𝜔

𝛼 𝜉 〈𝜇, 𝜇〉 𝜂 〈𝜇, 𝜌] {𝜈, 𝜖}〉
(
𝜂′] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜇〉 𝜂
〈
𝜇, 𝜌]

{
𝜖𝜈.ii

}〉 (
𝜂′]

{
𝜖𝜈.ii

})
𝜔

Ab
𝜈 ←⊂ 𝜖

St
StØ(𝛼, 𝜇)

St

StØ(𝛼, 𝜇)

𝜈 ←⊂ 𝜖
Ab

45. The Ab � St case when the Ab’ee does not appear across the St’ee

𝛼 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉
(
𝜉 ′] {𝜈, 𝜖}

) (
𝜂] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉
〈
𝜇, 𝜌]

{
𝜖𝜈.ii

}〉 (
𝜉 ′]

{
𝜖𝜈.ii

}) (
𝜂]

{
𝜖𝜈.ii

})
𝜔

𝛼 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉
(
𝜉 ′] {𝜈, 𝜖}

)
〈𝜇] {𝜈, 𝜖}, 𝜇] {𝜈, 𝜖}〉

(
𝜂] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉
〈
𝜇, 𝜌]

{
𝜖𝜈.ii

}〉 (
𝜉 ′]

{
𝜖𝜈.ii

}) 〈
𝜇]

{
𝜖𝜈.ii

}
, 𝜇]

{
𝜖𝜈.ii

}〉 (
𝜂]

{
𝜖𝜈.ii

})
𝜔

Ab
𝜈 ←⊂ 𝜖

St
StØ(𝛼, 𝜇] {𝜈, 𝜖})

St

StØ
(
𝛼, 𝜇]

{
𝜖𝜈.ii

})
𝜈 ←⊂ 𝜖
Ab

46. The Ab � St case when the Ab’ee appears across the St’ee

(
𝛼 𝜉𝜂 〈𝜇, 𝜌] {𝜈}〉

(
𝜂′] {𝜈}

)
𝜔
)
[↑𝜖]

𝛼 𝜉𝜂 〈𝜇, 𝜌] {𝜈, 𝜖}〉
(
𝜂′] {𝜈, 𝜖}

)
𝜔

(
𝛼 𝜉 〈𝜇, 𝜇〉 𝜂 〈𝜇, 𝜌] {𝜈}〉

(
𝜂′] {𝜈}

)
𝜔
)
[↑𝜖]

𝛼 𝜉 〈𝜇, 𝜇〉 𝜂 〈𝜇, 𝜌] {𝜈, 𝜖}〉
(
𝜂′] {𝜈, 𝜖}

)
𝜔

Di
𝜈 ←⊂= 𝜖

St
StØ(𝛼 [↑𝜖] , 𝜇 [↑𝜖])

St

StØ(𝛼, 𝜇)

𝜈 ←⊂= 𝜖
Di

47. The Di � St case when the Di’ee does not appear across the St’ee

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626

74 Yotam Dvir, Ohad Kammar, and Ori Lahav

(
𝛼 𝜉 〈𝜇, 𝜌] {𝜈}〉

(
𝜉 ′] {𝜈}

) (
𝜂] {𝜈}

)
𝜔
)
[↑𝜖]

𝛼 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉
(
𝜉 ′] {𝜈, 𝜖}

) (
𝜂] {𝜈, 𝜖}

)
𝜔

(
𝛼 𝜉 〈𝜇, 𝜌] {𝜈}〉

(
𝜉 ′] {𝜈}

)
〈𝜇] {𝜈}, 𝜇] {𝜈}〉

(
𝜂] {𝜈}

)
𝜔
)
[↑𝜖]

𝛼 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉
(
𝜉 ′] {𝜈, 𝜖}

)
〈𝜇] {𝜈, 𝜖}, 𝜇] {𝜈, 𝜖}〉

(
𝜂] {𝜈, 𝜖}

)
𝜔

Di
𝜈 ←⊂= 𝜖

St
StØ(𝛼 [↑𝜖] , (𝜇] {𝜈}) [↑𝜖])

St

StØ(𝛼, 𝜇] {𝜖})

𝜈 ←⊂= 𝜖
Di

48. The Di � St case when the Di’ee appears across the St’ee

𝛼 𝜉 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂 〈𝜇, 𝜌] {𝜈}〉
(
𝜂′] {𝜈}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂 〈𝜇, 𝜌] {𝜖}〉
(
𝜂′] {𝜖}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜃〉 𝜂 〈𝜇, 𝜌] {𝜈}〉
(
𝜂′] {𝜈}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜃〉 𝜂 〈𝜇, 𝜌] {𝜖}〉
(
𝜂′] {𝜖}

)
𝜔

Ti
𝜈 ≤vw 𝜖

Mu

Mu
𝜈 ≤vw 𝜖

Ti

49. The Ti � Mu case when the Ti’ee does not appear across the Mu’ee

𝛼 𝜉 〈𝜇, 𝜌] {𝜈}〉
(
𝜉 ′] {𝜈}

)
〈𝜇] {𝜈}, 𝜌] {𝜈}〉 〈𝜌] {𝜈}, 𝜃] {𝜈}〉

(
𝜂] {𝜈}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜌] {𝜖}〉
(
𝜉 ′] {𝜖}

)
〈𝜇] {𝜖}, 𝜌] {𝜖}〉 〈𝜌] {𝜖}, 𝜃] {𝜖}〉

(
𝜂] {𝜖}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜌] {𝜈}〉
(
𝜉 ′] {𝜈}

)
〈𝜇] {𝜈}, 𝜃] {𝜈}〉

(
𝜂] {𝜈}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜌] {𝜖}〉
(
𝜉 ′] {𝜖}

)
〈𝜇] {𝜖}, 𝜃] {𝜖}〉

(
𝜂] {𝜖}

)
𝜔

Ti
𝜈 ≤vw 𝜖

Mu

Mu
𝜈 ≤vw 𝜖

Ti

50. The Ti � Mu case when the Ti’ee appears across the Mu’ee

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675

A Denotational Approach to Release/Acquire Concurrency 75

𝛼 𝜉 〈𝜇, 𝜌] {𝜈}〉 〈𝜌] {𝜈}, 𝜃] {𝜈}〉 𝜂
(
𝜂′] {𝜈}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜌] {𝜖}〉 〈𝜌] {𝜖}, 𝜃] {𝜖}〉 𝜂
(
𝜂′] {𝜖}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜃] {𝜈}〉 𝜂
(
𝜂′] {𝜈}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜃] {𝜖}〉 𝜂
(
𝜂′] {𝜖}

)
𝜔

Ti
𝜈 ≤vw 𝜖

Mu

Mu
𝜈 ≤vw 𝜖

Ti

51. The Ti � Mu case when the Ti’ee makes its appearance in the first Mu’er

𝛼 𝜉 〈𝜇, 𝜌〉 〈𝜌, 𝜃] {𝜈}〉 𝜂
(
𝜂′] {𝜈}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜌〉 〈𝜌, 𝜃] {𝜖}〉 𝜂
(
𝜂′] {𝜖}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜃] {𝜈}〉 𝜂
(
𝜂′] {𝜈}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜃] {𝜖}〉 𝜂
(
𝜂′] {𝜖}

)
𝜔

Ti
𝜈 ≤vw 𝜖

Mu

Mu
𝜈 ≤vw 𝜖

Ti

52. The Ti � Mu case when the Ti’ee makes its appearance in the second Mu’er

𝛼 𝜉 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂
(
𝜂′] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂
(
𝜂′]

{
𝜖𝜈.ii

})
𝜔

𝛼 𝜉 〈𝜇, 𝜃〉 𝜂
(
𝜂′] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜃〉 𝜂
(
𝜂′]

{
𝜖𝜈.ii

})
𝜔

Ab
𝜈 ←⊂ 𝜖

Mu

Mu
𝜈 ←⊂ 𝜖
Ab

53. The Ab � Mu case when the Ab’ee does not appear across the Mu’ee

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724

76 Yotam Dvir, Ohad Kammar, and Ori Lahav

𝛼 𝜉
(
𝜉 ′] {𝜈, 𝜖}

)
〈𝜇] {𝜈, 𝜖}, 𝜌] {𝜈, 𝜖}〉 〈𝜌] {𝜈, 𝜖}, 𝜃] {𝜈, 𝜖}〉

(
𝜂] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉
(
𝜉 ′]

{
𝜖𝜈.ii

}) 〈
𝜇]

{
𝜖𝜈.ii

}
, 𝜌]

{
𝜖𝜈.ii

}〉 〈
𝜌]

{
𝜖𝜈.ii

}
, 𝜃]

{
𝜖𝜈.ii

}〉 (
𝜂]

{
𝜖𝜈.ii

})
𝜔

𝛼 𝜉
(
𝜉 ′] {𝜈, 𝜖}

)
〈𝜇] {𝜈, 𝜖}, 𝜃] {𝜈, 𝜖}〉

(
𝜂] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉
(
𝜉 ′]

{
𝜖𝜈.ii

}) 〈
𝜇]

{
𝜖𝜈.ii

}
, 𝜃]

{
𝜖𝜈.ii

}〉 (
𝜂]

{
𝜖𝜈.ii

})
𝜔

Ab
𝜈 ←⊂ 𝜖

Mu

Mu
𝜈 ←⊂ 𝜖
Ab

54. The Ab � Mu case when the Ab’ee appears across the Mu’ee

𝛼 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉 〈𝜌] {𝜈, 𝜖}, 𝜃] {𝜈, 𝜖}〉 𝜂
(
𝜂′] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉
〈
𝜇, 𝜌]

{
𝜖𝜈.ii

}〉 〈
𝜌]

{
𝜖𝜈.ii

}
, 𝜃]

{
𝜖𝜈.ii

}〉
𝜂
(
𝜂′]

{
𝜖𝜈.ii

})
𝜔

𝛼 𝜉 〈𝜇, 𝜃] {𝜈, 𝜖}〉 𝜂
(
𝜂′] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉
〈
𝜇, 𝜃]

{
𝜖𝜈.ii

}〉
𝜂
(
𝜂′]

{
𝜖𝜈.ii

})
𝜔

Ab
𝜈 ←⊂ 𝜖

Mu

Mu
𝜈 ←⊂ 𝜖
Ab

55. The Ab � Mu case when the Ab’ee makes its appearance in the first Mu’er

𝛼 𝜉 〈𝜇, 𝜌〉 〈𝜌, 𝜃] {𝜈, 𝜖}〉 𝜂
(
𝜂′] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜌〉
〈
𝜌, 𝜃]

{
𝜖𝜈.ii

}〉
𝜂
(
𝜂′]

{
𝜖𝜈.ii

})
𝜔

𝛼 𝜉 〈𝜇, 𝜃] {𝜈, 𝜖}〉 𝜂
(
𝜂′] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉
〈
𝜇, 𝜃]

{
𝜖𝜈.ii

}〉
𝜂
(
𝜂′]

{
𝜖𝜈.ii

})
𝜔

Ab
𝜈 ←⊂ 𝜖

Mu

Mu
𝜈 ←⊂ 𝜖
Ab

56. The Ab � Mu case when the Ab’ee makes its appearance in the second Mu’er

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773

A Denotational Approach to Release/Acquire Concurrency 77

(
𝛼 𝜉 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂 〈𝜇, 𝜌] {𝜈}〉

(
𝜂′] {𝜈}

)
𝜔
)
[↑𝜖]

𝛼 𝜉 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂 〈𝜇, 𝜌] {𝜈, 𝜖}〉
(
𝜂′] {𝜈, 𝜖}

)
𝜔

(
𝛼 𝜉 〈𝜇, 𝜃〉 𝜂 〈𝜇, 𝜌] {𝜈}〉

(
𝜂′] {𝜈}

)
𝜔
)
[↑𝜖]

𝛼 𝜉 〈𝜇, 𝜃〉 𝜂 〈𝜇, 𝜌] {𝜈, 𝜖}〉
(
𝜂′] {𝜈, 𝜖}

)
𝜔

Di
𝜈 ←⊂= 𝜖

Mu

Mu
𝜈 ←⊂= 𝜖

Di

57. The Di � Mu case when the Di’ee does not appear across the Mu’ee

(
𝛼 𝜉 〈𝜇, 𝜌] {𝜈}〉

(
𝜉 ′] {𝜈}

)
〈𝜇] {𝜈}, 𝜌] {𝜈}〉 〈𝜌] {𝜈}, 𝜃] {𝜈}〉

(
𝜂] {𝜈}

)
𝜔
)
[↑𝜖]

𝛼 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉
(
𝜉 ′] {𝜈, 𝜖}

)
〈𝜇] {𝜈, 𝜖}, 𝜌] {𝜈, 𝜖}〉 〈𝜌] {𝜈, 𝜖}, 𝜃] {𝜈, 𝜖}〉

(
𝜂] {𝜈, 𝜖}

)
𝜔

(
𝛼 𝜉 〈𝜇, 𝜌] {𝜈}〉

(
𝜉 ′] {𝜈}

)
〈𝜇] {𝜈}, 𝜃] {𝜈}〉

(
𝜂] {𝜈}

)
𝜔
)
[↑𝜖]

𝛼 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉
(
𝜉 ′] {𝜈, 𝜖}

)
〈𝜇] {𝜈, 𝜖}, 𝜃] {𝜈, 𝜖}〉

(
𝜂] {𝜈, 𝜖}

)
𝜔

Di
𝜈 ←⊂= 𝜖

Mu

Mu
𝜈 ←⊂= 𝜖

Di

58. The Di � Mu case when the Di’ee appears across the Mu’ee

(
𝛼 𝜉 〈𝜇, 𝜌] {𝜈}〉 〈𝜌] {𝜈}, 𝜃] {𝜈}〉 𝜂

(
𝜂′] {𝜈}

)
𝜔
)
[↑𝜖]

𝛼 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉 〈𝜌] {𝜈, 𝜖}, 𝜃] {𝜈, 𝜖}〉 𝜂
(
𝜂′] {𝜈, 𝜖}

)
𝜔

(
𝛼 𝜉 〈𝜇, 𝜃] {𝜈}〉 𝜂

(
𝜂′] {𝜈}

)
𝜔
)
[↑𝜖]

𝛼 𝜉 〈𝜇, 𝜃] {𝜈, 𝜖}〉 𝜂
(
𝜂′] {𝜈, 𝜖}

)
𝜔

Di
𝜈 ←⊂= 𝜖

Mu

Mu
𝜈 ←⊂= 𝜖

Di

59. The Di � Mu case when the Di’ee makes its appearance in the first Mu’er

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822

78 Yotam Dvir, Ohad Kammar, and Ori Lahav

(
𝛼 𝜉 〈𝜇, 𝜌〉 〈𝜌, 𝜃] {𝜈}〉 𝜂

(
𝜂′] {𝜈}

)
𝜔
)
[↑𝜖]

𝛼 𝜉 〈𝜇, 𝜌〉 〈𝜌, 𝜃] {𝜈, 𝜖}〉 𝜂
(
𝜂′] {𝜈, 𝜖}

)
𝜔

(
𝛼 𝜉 〈𝜇, 𝜃] {𝜈}〉 𝜂

(
𝜂′] {𝜈}

)
𝜔
)
[↑𝜖]

𝛼 𝜉 〈𝜇, 𝜃] {𝜈, 𝜖}〉 𝜂
(
𝜂′] {𝜈, 𝜖}

)
𝜔

Di
𝜈 ←⊂= 𝜖

Mu

Mu
𝜈 ←⊂= 𝜖

Di

60. The Di � Mu case when the Di’ee makes its appearance in the second Mu’er

𝛼 𝜉
(
𝜂] {𝜈}

)
𝜅

𝛼 𝜉
(
𝜂] {𝜖}

)
𝜅

𝛼 𝜉
(
𝜂] {𝜈}

)
𝜔

𝛼 𝜉
(
𝜂] {𝜖}

)
𝜔

Ti
𝜈 ≤vw 𝜖

Fw
𝜅 ≤vw𝜔 ∧ FwØ(𝜔, (𝜉 (𝜂] {𝜈})) .c)

Fw

𝜅 ≤vw𝜔 ∧ FwØ(𝜔, (𝜉 (𝜂] {𝜖})) .c)
𝜈 ≤vw 𝜖

Ti

61. The Ti � Fw case

𝜅 𝜉
(
𝜂] {𝜈}

)
𝜔

𝜅 𝜉
(
𝜂] {𝜖}

)
𝜔

𝛼 𝜉
(
𝜂] {𝜈}

)
𝜔

𝛼 𝜉
(
𝜂] {𝜖}

)
𝜔

Ti
𝜈 ≤vw 𝜖

Rw
𝛼 ≤vw 𝜅 ∧ RwØ(𝛼, (𝜉 (𝜂] {𝜈})) .o)

Rw

𝛼 ≤vw 𝜅 ∧ RwØ(𝛼, (𝜉 (𝜂] {𝜖})) .o)
𝜈 ≤vw 𝜖

Ti

62. The Ti � Rw case

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871

A Denotational Approach to Release/Acquire Concurrency 79

𝛼 𝜉
(
𝜂] {𝜈, 𝜖}

)
𝜅

𝛼 𝜉
(
𝜂]

{
𝜖𝜈.ii

})
𝜅

𝛼 𝜉
(
𝜂] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉
(
𝜂]

{
𝜖𝜈.ii

})
𝜔

Ab
𝜈 ←⊂ 𝜖

Fw
𝜅 ≤vw𝜔 ∧ FwØ(𝜔, (𝜉 (𝜂] {𝜈, 𝜖})) .c)

Fw

𝜅 ≤vw𝜔 ∧ FwØ(𝜔, (𝜉 (𝜂] {
𝜖𝜈.ii

}))
.c
)

𝜈 ←⊂ 𝜖
Ab

63. The Ab � Fw case

𝜅 𝜉
(
𝜂] {𝜈, 𝜖}

)
𝜔

𝜅 𝜉
(
𝜂]

{
𝜖𝜈.ii

})
𝜔

𝛼 𝜉
(
𝜂] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉
(
𝜂]

{
𝜖𝜈.ii

})
𝜔

Ab
𝜈 ←⊂ 𝜖

Rw
𝛼 ≤vw 𝜅 ∧ RwØ(𝛼, (𝜉 (𝜂] {𝜈, 𝜖})) .c)

Rw

𝛼 ≤vw 𝜅 ∧ RwØ(𝛼, (𝜉 (𝜂] {
𝜖𝜈.ii

}))
.c
)

𝜈 ←⊂ 𝜖
Ab

64. The Ab � Rw case

(
𝛼 𝜉

(
𝜂] {𝜈}

)
𝜅
)
[↑𝜖]

𝛼 𝜉
(
𝜂] {𝜈, 𝜖}

)
𝜅

(
𝛼 𝜉

(
𝜂] {𝜈}

)
𝜔
)
[↑𝜖]

𝛼 𝜉
(
𝜂] {𝜈, 𝜖}

)
𝜔

Di
𝜈 ←⊂= 𝜖

Fw
𝜅 [↑𝜖] ≤vw𝜔 [↑𝜖] ∧ FwØ(𝜔 [↑𝜖] , ((𝜉 (𝜂] {𝜈})) [↑𝜖]) .c)

Fw

𝜅 ≤vw𝜔 ∧ FwØ(𝜔, (𝜉 (𝜂] {𝜖})) .c)
𝜈 ←⊂= 𝜖

Di

65. The Di � Fw case

, Vol. 1, No. 1, Article . Publication date: April 2024.

WoRK in pRogRess – to be submitted to TOPLAS 2024

3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920

80 Yotam Dvir, Ohad Kammar, and Ori Lahav

(
𝜅 𝜉

(
𝜂] {𝜈}

)
𝜔
)
[↑𝜖]

𝜅 𝜉
(
𝜂] {𝜈, 𝜖}

)
𝜔

(
𝛼 𝜉

(
𝜂] {𝜈}

)
𝜔
)
[↑𝜖]

𝛼 𝜉
(
𝜂] {𝜈, 𝜖}

)
𝜔

Di
𝜈 ←⊂= 𝜖

Rw
𝛼 [↑𝜖] ≤vw 𝜅 [↑𝜖] ∧ RwØ(𝛼 [↑𝜖] , ((𝜉 (𝜂] {𝜈})) [↑𝜖]) .c)

Rw

𝛼 ≤vw 𝜅 ∧ RwØ(𝛼, (𝜉 (𝜂] {𝜖})) .c)
𝜈 ←⊂= 𝜖

Di

66. The Di � Rw case

, Vol. 1, No. 1, Article . Publication date: April 2024.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Language and Operational Semantics
	2.2 Traces in SC
	2.3 RA Operational Semantics

	3 Contribution Summary
	3.1 Traces for RA
	3.2 Compoisitionality and the Monadic Presentation
	3.3 Relating the Denotational Semantics to the Operational Semantics

	4 Language and Typing
	5 Operational Semantics
	5.1 View-based Semantics
	5.2 View Forwarding
	5.3 Invariants

	6 Denotational Semantics
	6.1 Trace-based Semantics
	6.2 Monad-based Semantics
	6.3 Our Semantic Framework
	6.4 Generating Denotations
	6.5 Concrete Denotations
	6.6 Abstract Denotations

	7 Metatheory
	7.1 Commutativity
	7.2 Compositionality
	7.3 Soundness
	7.4 Adequacy
	7.5 Transformations

	8 Conclusion
	Acknowledgments
	References
	A Operational Semantics Proofs
	A.1 Properties of Memories
	A.2 Properties of View Trees
	A.3 Properties of the Operational Semantics

	B Metatheory Proofs
	B.1 Rewriting Proofs
	B.2 Compositionality Proof
	B.3 Soundness Proof
	B.4 Adequacy Proof

	C Validating Transformations
	D Commutativity Diagrams

