Graphical algebraic foundations for monad stacks

Ohad Kammar

Higher-Order Programming with Effects 31 August, 2014

Problem statement

? Effects in a pure language.
! Use monads.
? Monads don't compose.
! Use monad transformers (monad stacks).
? But which order...
(StateT s . ErrorT e)
vs
(ErrorTe.StateT s)
!? Current practice relies on:
Programmer insight and experience ${ }^{1}$, and black art ${ }^{2}$.
! Towards a systematic approach? Tool support?
${ }^{1}$ HOPE reviewer \#1.
${ }^{2}$ HOPE reviewer \#3.

Demo (part I)

http://www.cl.cam.ac.uk/~ok259/graphtool

Demo (part I)

http://www.cl.cam.ac.uk/~ok259/graphtool
Small print
Full details later, but the tool:

- can't handle all monad transformers; and
- might fail to find valid monad stacks.

Talk structure

1. Algebraic effects.
2. Cographs (aka series-parallel graphs).
3. Tool.
4. Conclusion.

Algebraic effects (Plotkin and Power 2002)

Semantics for exceptions

Let m be a (set-theoretic) monad, and e a set of exceptions.
We say that $\langle m$, raise \rangle is an e-exception monad if raise is a Kleisli arrow:

$$
\text { raise }:: e \rightarrow m \emptyset
$$

The initial e-exception monad is the exception monad $m a=$ Error e a with its standard raise operation.
l.e., for every other e-exception monad $\left\langle m^{\prime}\right.$, raise \rangle, there exists a unique monad morphism $h:: m \rightarrow m^{\prime}$ satisfying for all exc :: e:

$$
h(\text { raise exc })=\text { raise }^{\prime} \text { exc }
$$

Algebraic effects (Plotkin and Power 2002)

Semantics for global state

Let m be a (set-theoretic) monad, and s a set of states.
We say that $\langle m, g e t, p u t\rangle$ is a global s-state monad if get and put are Kleisli arrows:

$$
\text { get }::() \rightarrow m s \quad \text { put }:: s \rightarrow m()
$$

such that the following three equations hold (Plotkin and Power 2002, and Melliès 2010):
$x \leftarrow \operatorname{get}() ;$
put $x$$\quad$ return () $\quad \begin{array}{ll}\text { put } x ; \\ \text { get }()\end{array}=\begin{array}{ll}\text { put } x ; & \text { put } x ; \\ \text { return } x & \text { put } y\end{array}=$ put y
(in $m(), m s$, and $m()$ respectively).
The initial global s-state monad is the global s-state monad $m a=$ State $s a=s \rightarrow(s, a)$ with its get and put operations.

Algebraic effects (Plotkin and Power 2002)

Algebraic semantics (part 1)
A presentation is a triple $\langle\pi, a r, E\rangle$ consisting of a set π (of generic effect symbols) and a π-indexed collection of pairs of sets ar:

$$
\left\langle p_{o p}, a_{o p}\right\rangle \quad o p \in \pi
$$

(the pair $\langle\pi$, ar \rangle is called a signature), and E is a set of pairs of terms (called equations) involving the monadic return and do notation, and Kleisli arrows:

$$
o p:: p_{o p} \rightarrow m a_{o p}
$$

for all $o p \in \pi$.

Algebraic effects (Plotkin and Power n2002)

Algebraic semantics (part 2)
Given a presentation $P=\langle\pi$, ar, $E\rangle$, a P-monad is a monad m and an assignment of Kleisli arrows:

$$
o p:: p_{o p} \rightarrow m a_{o p}
$$

for all $o p \in \pi$, satisfying all the equations in E.
The initial P-monad m_{P} always exists.
All these concepts are well established and date back to Lawvere's thesis (1963) and to Linton (1966).

Plotkin and Power's algebraic theory of effects analyses monads used in the semantics of computational effects in terms of their presentations.
(Excludes the continuation monad, more details offline.)

Examples (Plotkin and Power 2002)

Previous examples

- Exceptions: raise :: $e \rightarrow m \emptyset$, no equations
- Global state: get $::() \rightarrow m s$, put $:: s \rightarrow m()$, as before Additional examples
- Environment monad: get $::() \rightarrow m$ s, equations:

$$
\begin{array}{ll}
x \leftarrow \operatorname{get}() ; & x \leftarrow \operatorname{get}() ; \\
\operatorname{return}() & \operatorname{return}() \\
& y \leftarrow \operatorname{get}() ;= \\
& \operatorname{return}(x, y)
\end{array}
$$

- Writer monad for a monoid \langle mon, $\cdot, 1\rangle:$ act $::$ mon $\rightarrow m()$:

$$
\begin{aligned}
& \text { act } m_{1} ; \\
& \text { act } m_{2}
\end{aligned}=\operatorname{act}\left(m_{1} \cdot m_{2}\right) \quad \text { act } 1=\operatorname{return}()
$$

- Free monad for a functor F : no eqns (more details offline)

Examples

Additional examples (ctd)

- List monad: fail $::() \rightarrow m \emptyset$, choose $::() \rightarrow m$ bool equations:

$$
\begin{array}{lll}
x \leftarrow & \text { choose }() ; \\
\text { if } x & \text { then fail } \quad=\text { return }()=\text { if } x & \text { theos }() \\
& \text { else return }() \\
& \text { else fail }
\end{array}
$$

$$
\begin{aligned}
& x \leftarrow \text { choose (); } \quad x \leftarrow \text { choose }() \text {; } \\
& y \leftarrow \text { choose (); } \quad y \leftarrow \text { choose }() \text {; } \\
& \text { case (} x, y \text {) of } \\
& =\operatorname{case}(x, y) o f \\
& \text { (True, True) } \rightarrow \text { return } 1=\quad(\text { True,_) } \quad \rightarrow \text { return } 1 \\
& \text { (True, False) } \rightarrow \text { return } 2 \quad \text { (False, True) } \rightarrow \text { return } 2 \\
& \text { (}- \text {, False) } \rightarrow \text { return } 3 \quad \text { (False, False) } \rightarrow \text { return } 3
\end{aligned}
$$

Combining effects (Hyland, Plotkin, and Power 2006)

Sum

Every two presentations $P_{1}=\left\langle\pi_{1}, a r_{1}, E_{1}\right\rangle, P_{2}=\left\langle\pi_{2}, a r_{2}, E_{2}\right\rangle$ can be combined by the disjoint union of the operations $\pi_{1}+\pi_{2}$, and subsequent relabelling of the equations. Call the resulting presentation their sum, denoted by $P_{1}+P_{2}$.

Theorem

Let $P_{\text {exc }}$ be the presentation for e-exceptions. For every presentation P :

$$
m_{P_{\text {exc }}+P} \cong E r r o r T \text { e } m_{P}
$$

Therefore, the action of the exception monad transformer arises as the sum with the theory for exception.

Theorem

Let P_{F} be the presentation for the free monad for a functor F. For every presentation P : $m_{P_{F}+P} \cong$ Free $T F m_{P}$.

Combining effects (Hyland, Plotkin, and Power 2006)

Tensor

By adding the following equations

$$
\begin{array}{ll}
x_{1} \leftarrow o p_{1} p_{1} & x_{2} \leftarrow o p_{2} p_{2} \\
x_{2} \leftarrow o p_{2} p_{2}= & x_{1} \leftarrow o p_{1} p_{1} \\
\text { return }\left(x_{1}, x_{2}\right) & \text { return }\left(x_{1}, x_{2}\right)
\end{array}
$$

for all $o p_{1} \in \pi_{1}$, op $p_{2} \in p i_{2}$ to the sum $P_{1}+P_{2}$, we obtain another way to combine presentations, their tensor $P_{1} \otimes P_{2}$.
Theorem
Let $P_{s t}, P_{\text {env }}, P_{\text {mon }}$ be the presentations for the s-state, s-environment and mon-writer monads. Then for every presentation P :

$$
\begin{array}{r}
m_{P_{s t} \otimes P} \cong \text { StateT s } m_{P} \quad m_{P_{\text {env }} \otimes P} \cong \operatorname{Reader} T \text { s } m_{P} \\
m_{P_{m o n} \otimes P} \cong \text { WriterT mon } m_{P}
\end{array}
$$

Combining effects

Applicability

Covered the MTL (sans continuations).
Not all monad transformers arise as either sum or tensor, even when their associated monads arise from presentations.

Jaskelioff's ListT

Theorem

$$
\text { ListT } m a=m(\text { Either }()(a, \text { ListT } m a))
$$

Let $P_{\text {list }}$ be the presentations for the list monad. For every presentation $P: m_{P_{\text {list }} \odot P} \cong \operatorname{List} T m_{P}$, where $P_{\text {list }} \odot P$ is obtained from $P_{\text {list }}+P$ by adding the following equation, for all op $\in \pi$:

$$
\begin{array}{rr}
b \leftarrow \text { choo se }() ; & y \leftarrow o p p ; \\
\text { if } b \text { then } y \leftarrow o p ~ p ; \\
\text { return Just } y & =\begin{array}{r}
\text { if } b \text { theose return Just } y \\
\text { else return None return None }
\end{array}
\end{array}
$$

Commutativity analysis (Hyland, Plotkin, and Power 2006)

Setting

Restrict attention to monad transformers arising as sum or tensor of theories (e.g., MTL).

Design choice

Choose, for every pair of effects, whether they should commute.

Analysis
Do these commutative equations:

- arise through sum and tensor of basic theories?
- result from a monad stack of the given transformers?

Commutativity analysis (Hyland, Plotkin, and Power 2006)

Setting

Restrict attention to monad transformers arising as sum or tensor of theories (e.g., MTL).

Design choice

Choose, for every pair of effects, whether they should commute.
State • Exceptions vs State• \leftrightarrow Exceptions

Analysis
Do these commutative equations:

- arise through sum and tensor of basic theories?

$$
t::=x\left|\sum_{i \in I} t_{i}\right| \bigotimes_{i \in I} t_{i}
$$

- result from a monad stack of the given transformers?

Graph theory (Hyland, Plotkin, and Power 2006)

Every term denotes a graph:

$$
\llbracket x \rrbracket=x \bullet
$$

$$
\llbracket t_{1}+t_{2} \rrbracket=\left[\begin{array}{ll:l}
{\left[t_{1} \rrbracket\right.} & \left.\llbracket t_{2}\right] & \vdots \\
\hdashline \ldots & \cdots
\end{array}\right.
$$

But not all graphs arise in this way, e.g., P_{4} :
$\bullet \leftrightarrow \bullet \leftrightarrow \bullet \leftrightarrow \bullet$

Cographs

Definition

A cograph is a graph isomorphic to $\llbracket t \rrbracket$ for some t (a.k.a. series-parallel graphs, ambiguously).

Theorem (Corneil et al. 1981)
A graph is a cograph $\Longleftrightarrow P_{4}$ does not embed into it
$\bullet \leftrightarrow \bullet \leftrightarrow \bullet \leftrightarrow \bullet$

- Witness for negative result.
- Polynomial time.
- Does not provide a sum and tensor decomposition.

Cographs

Theorem (McConnell and Spinrad 1999)

There is a linear time algorithm for deciding whether a given graph is a cograph, and if so, exhibiting its sum and tensor decomposition.

- Computes the modular decomposition of the graph (more offline).
- Simpler algorithms in polynomial time.

Demo (part II)

http://www.cl.cam.ac.uk/~ok259/graphtool

Demo (part II)

http://www.cl.cam.ac.uk/~ok259/graphtool
Small print

- Only applies to algebraic effects (excludes continuations) arising as sum and tensor (excludes ListT).
- Might fail to find valid monad stacks.
non-determinism + exceptions
$=$
non-determinism \otimes exceptions
- • $\leftrightarrow \bullet \bullet$
vS
$\bullet \leftrightarrow \bullet \leftrightarrow \bullet \leftrightarrow \bullet$

Summary

Conclusion

The algebraic perspective, regardless of the tool, is insightful.

Contributions

- Connecting this problem with cographs (suggested by Atkey).
- Characterising graphs arising from monad stacks (straightforward).
- The algebraic analysis of Jaskelioff's ListT.

Further work

- Beyond the MTL (e.g., Jaskelioff's thesis).
- No idea how to deal with continuations.

