
Computer
Laboratory

Graphical algebraic foundations for monad stacks

Ohad Kammar

Higher-Order Programming with Effects
31 August, 2014

Ohad Kammar Graphical algebraic foundations for monad stacks

Problem statement

? Effects in a pure language.

! Use monads.

? Monads don’t compose.

! Use monad transformers (monad stacks).

? But which order. . .

(StateT s . ErrorT e)
vs

(ErrorT e . StateT s)

!? Current practice relies on:
Programmer insight and experience1, and black art2.

! Towards a systematic approach? Tool support?

1HOPE reviewer #1.
2HOPE reviewer #3.

Ohad Kammar Graphical algebraic foundations for monad stacks

Demo (part I)

http://www.cl.cam.ac.uk/~ok259/graphtool

Ohad Kammar Graphical algebraic foundations for monad stacks

http://www.cl.cam.ac.uk/~ok259/graphtool

Demo (part I)

http://www.cl.cam.ac.uk/~ok259/graphtool

Small print

Full details later, but the tool:

I can’t handle all monad transformers; and

I might fail to find valid monad stacks.

Ohad Kammar Graphical algebraic foundations for monad stacks

http://www.cl.cam.ac.uk/~ok259/graphtool

Talk structure

1. Algebraic effects.

2. Cographs (aka series-parallel graphs).

3. Tool.

4. Conclusion.

Ohad Kammar Graphical algebraic foundations for monad stacks

Algebraic effects (Plotkin and Power 2002)

Semantics for exceptions

Let m be a (set-theoretic) monad, and e a set of exceptions.
We say that 〈m, raise〉 is an e-exception monad if raise is a Kleisli
arrow:

raise :: e → m ∅

The initial e-exception monad is the exception monad
m a = Error e a with its standard raise operation.

I.e., for every other e-exception monad 〈m′, raise ′〉, there exists a
unique monad morphism h :: m→ m′ satisfying for all exc :: e:

h(raise exc) = raise ′ exc

Ohad Kammar Graphical algebraic foundations for monad stacks

Algebraic effects (Plotkin and Power 2002)

Semantics for global state

Let m be a (set-theoretic) monad, and s a set of states.
We say that 〈m, get, put〉 is a global s-state monad if get and put
are Kleisli arrows:

get :: ()→ m s put :: s → m ()

such that the following three equations hold (Plotkin and Power
2002, and Melliès 2010):

x ← get ();

put x
= return ()

put x ;

get ()
=

put x ;

return x

put x ;

put y
= put y

(in m (), m s, and m () respectively).

The initial global s-state monad is the global s-state monad
m a = State s a = s → (s, a) with its get and put operations.

Ohad Kammar Graphical algebraic foundations for monad stacks

Algebraic effects (Plotkin and Power 2002)

Algebraic semantics (part 1)

A presentation is a triple 〈π, ar ,E 〉 consisting of a set π (of generic
effect symbols) and a π-indexed collection of pairs of sets ar :

〈pop, aop〉 op ∈ π

(the pair 〈π, ar〉 is called a signature), and E is a set of pairs of
terms (called equations) involving the monadic return and do
notation, and Kleisli arrows:

op :: pop → m aop

for all op ∈ π.

Ohad Kammar Graphical algebraic foundations for monad stacks

Algebraic effects (Plotkin and Power n2002)

Algebraic semantics (part 2)

Given a presentation P = 〈π, ar ,E 〉, a P-monad is a monad m and
an assignment of Kleisli arrows:

op :: pop → m aop

for all op ∈ π, satisfying all the equations in E .

The initial P-monad mP always exists.

All these concepts are well established and date back to Lawvere’s
thesis (1963) and to Linton (1966).

Plotkin and Power’s algebraic theory of effects analyses monads
used in the semantics of computational effects in terms of their
presentations.

(Excludes the continuation monad, more details offline.)

Ohad Kammar Graphical algebraic foundations for monad stacks

Examples (Plotkin and Power 2002)

Previous examples

I Exceptions: raise :: e → m ∅, no equations

I Global state: get :: ()→ m s, put :: s → m (), as before

Additional examples

I Environment monad: get :: ()→ m s, equations:

x ← get ();

return ()
= return ()

x ← get ();

y ← get ();

return(x , y)

=
z ← get ();

return(z , z)

I Writer monad for a monoid 〈mon, ·, 1〉: act :: mon→ m ():

act m1;

act m2
= act (m1 ·m2) act 1 = return()

I Free monad for a functor F : no eqns (more details offline)
Ohad Kammar Graphical algebraic foundations for monad stacks

Examples

Additional examples (ctd)

I List monad: fail :: ()→ m ∅, choose :: ()→ m bool
equations:

x ← choose ();

if x then fail

else return ()

= return () =

x ← choose ();

if x then return ()

else fail

x ←choose();

y ←choose();

case(x , y)of

(True,True) → return 1

(True,False) → return 2

(,False) → return 3

=

x ←choose();

y ←choose();

case(x , y)of

(True,) → return 1

(False,True) → return 2

(False,False) → return 3

Ohad Kammar Graphical algebraic foundations for monad stacks

Combining effects (Hyland, Plotkin, and Power 2006)

Sum
Every two presentations P1 = 〈π1, ar1,E1〉, P2 = 〈π2, ar2,E2〉 can
be combined by the disjoint union of the operations π1 + π2, and
subsequent relabelling of the equations. Call the resulting
presentation their sum, denoted by P1 + P2.

Theorem
Let Pexc be the presentation for e-exceptions. For every
presentation P:

mPexc+P
∼= ErrorT e mP

Therefore, the action of the exception monad transformer arises as
the sum with the theory for exception.

Theorem
Let PF be the presentation for the free monad for a functor F . For
every presentation P: mPF+P

∼= FreeT F mP .

Ohad Kammar Graphical algebraic foundations for monad stacks

Combining effects (Hyland, Plotkin, and Power 2006)

Tensor
By adding the following equations

x1 ← op1 p1

x2 ← op2 p2

return (x1, x2)

=

x2 ← op2 p2

x1 ← op1 p1

return (x1, x2)

for all op1 ∈ π1, op2 ∈ pi2 to the sum P1 + P2, we obtain another
way to combine presentations, their tensor P1 ⊗ P2.

Theorem
Let Pst ,Penv ,Pmon be the presentations for the s-state,
s-environment and mon-writer monads. Then for every
presentation P:

mPst⊗P
∼= StateT s mP mPenv⊗P

∼= ReaderT s mP

mPmon⊗P
∼= WriterT mon mP

Ohad Kammar Graphical algebraic foundations for monad stacks

Combining effects

Applicability

Covered the MTL (sans continuations).
Not all monad transformers arise as either sum or tensor, even
when their associated monads arise from presentations.

Jaskelioff’s ListT

ListT m a = m (Either () (a, ListT m a))
Theorem
Let Plist be the presentations for the list monad. For every
presentation P: mPlist�P

∼= ListT mP , where Plist � P is obtained
from Plist + P by adding the following equation, for all op ∈ π:

b ← choo se();
if b then y ← op p;

return Just y
else return None

=

y ←op p;
b ← choose();
if b then return Just y

else return None

Ohad Kammar Graphical algebraic foundations for monad stacks

Commutativity analysis (Hyland, Plotkin, and Power 2006)

Setting

Restrict attention to monad transformers arising as sum or tensor
of theories (e.g., MTL).

Design choice

Choose, for every pair of effects, whether they should commute.

State • •Exceptions vs State• ↔ •Exceptions

Analysis

Do these commutative equations:

I arise through sum and tensor of basic theories?

t ::= x |
∑
i∈I

ti |
⊗
i∈I

ti

I result from a monad stack of the given transformers?

Ohad Kammar Graphical algebraic foundations for monad stacks

Commutativity analysis (Hyland, Plotkin, and Power 2006)

Setting

Restrict attention to monad transformers arising as sum or tensor
of theories (e.g., MTL).

Design choice

Choose, for every pair of effects, whether they should commute.

State • •Exceptions vs State• ↔ •Exceptions

Analysis

Do these commutative equations:

I arise through sum and tensor of basic theories?

t ::= x |
∑
i∈I

ti |
⊗
i∈I

ti

I result from a monad stack of the given transformers?

Ohad Kammar Graphical algebraic foundations for monad stacks

Graph theory (Hyland, Plotkin, and Power 2006)

Every term denotes a graph:

⟦x⟧ = x•

⟦t1 + t2⟧ =

⟦t1 ⊗ t2⟧ =

But not all graphs arise in this way, e.g., P4:

• ↔ • ↔ • ↔ •

Ohad Kammar Graphical algebraic foundations for monad stacks

Cographs

Definition
A cograph is a graph isomorphic to ⟦t⟧ for some t (a.k.a.
series-parallel graphs, ambiguously).

Theorem (Corneil et al. 1981)

A graph is a cograph ⇐⇒ P4 does not embed into it

• ↔ • ↔ • ↔ •

I Witness for negative result.

I Polynomial time.

I Does not provide a sum and tensor decomposition.

Ohad Kammar Graphical algebraic foundations for monad stacks

Cographs

Theorem (McConnell and Spinrad 1999)

There is a linear time algorithm for deciding whether a given graph
is a cograph, and if so, exhibiting its sum and tensor
decomposition.

I Computes the modular decomposition of the graph
(more offline).

I Simpler algorithms in polynomial time.

Ohad Kammar Graphical algebraic foundations for monad stacks

Demo (part II)

http://www.cl.cam.ac.uk/~ok259/graphtool

Ohad Kammar Graphical algebraic foundations for monad stacks

http://www.cl.cam.ac.uk/~ok259/graphtool

Demo (part II)

http://www.cl.cam.ac.uk/~ok259/graphtool

Small print

I Only applies to algebraic effects (excludes continuations)
arising as sum and tensor (excludes ListT).

I Might fail to find valid monad stacks.

non-determinism + exceptions
=

non-determinism ⊗ exceptions

• • ↔ • ↔ •

vs

• ↔ • ↔ • ↔ •

Ohad Kammar Graphical algebraic foundations for monad stacks

http://www.cl.cam.ac.uk/~ok259/graphtool

Summary

Conclusion
The algebraic perspective, regardless of the tool, is insightful.

Contributions

I Connecting this problem with cographs (suggested by Atkey).

I Characterising graphs arising from monad stacks
(straightforward).

I The algebraic analysis of Jaskelioff’s ListT .

Further work

I Beyond the MTL (e.g., Jaskelioff’s thesis).

I No idea how to deal with continuations.

Ohad Kammar Graphical algebraic foundations for monad stacks

