A monad for full ground reference cells

<u>Ohad Kammar</u>, Paul B. Levy, Sean K. Moss, and Sam Staton http://arxiv.org/abs/1702.04908

Thirty-Second Annual ACM/IEEE Symposium on Logic in Computer Science (LICS) 20–23 June 2017, Reykjavik

Ohad Kammar, Paul B. Levy, Sean K. Moss, and Sam Staton

ground reference cells

Dynamic allocation on the heap:

true

Full ground reference cells

Dynamic allocation on the heap:

i.e.:

- linked lists;
- trees;
- graphs; etc.

Semantics for full ground storage

- Sets-with-structure and structure preserving functions
- Monad over a bi-CCC

Extending the line of work of:

- Reynolds and Oles'82
- Moggi'90
- O'Hearn and Tennent'92,
- Stark'94

- ► Ghica'97
- Plotkin-Power'02
- Levy'02

Variance

Kripke semantics is functorial in the shape of the heap. But the collection of heaps is not functorial:

Contribution

- Heaps functor over initialisations.
- A hiding/encapsulation monad over initialisations.
- A full ground references monad.
- Its decomposition into a global state transformation on the hiding monad.
- Evaluation:
 - An effect masking property.
 - Adequate semantics for a call-by-value calculus for full ground references.
 - Validation of the local state equations. [Plotkin-Power'02, Staton'10, Melliès'14]

Full ground types

Full ground signature $\langle \mathbf{S}, ctype \rangle$

• Countably many $c \in \mathbf{S}$ cell sorts

which determine the full ground types $\gamma \in \mathbf{G}$ are:

$$\gamma ::= \mathbf{0} \mid \gamma_1 + \gamma_2 \mid \mathbf{1} \mid \gamma_1 * \gamma_2 \mid \mathbf{ref}_c$$

• A content type function $ctype : \mathbf{S} \to \mathbf{G}$

Full ground types

Full ground signature $\langle \mathbf{S}, ctype \rangle$

• Countably many $c \in \mathbf{S}$ cell sorts

which determine the full ground types $\gamma \in \mathbf{G}$ are:

$$\gamma ::= \mathbf{0} \mid \gamma_1 + \gamma_2 \mid \mathbf{1} \mid \gamma_1 * \gamma_2 \mid \mathbf{ref}_c$$

 \blacktriangleright A content type function $\mathit{ctype} : \mathbf{S} \rightarrow \mathbf{G}$ Example

 $\mathbf{S}\coloneqq\{\texttt{ptr}\}$

Full ground types

Full ground signature $\langle \mathbf{S}, ctype \rangle$

• Countably many $c \in \mathbf{S}$ cell sorts

which determine the full ground types $\gamma \in \mathbf{G}$ are:

$$\gamma ::= \mathbf{0} \mid \gamma_1 + \gamma_2 \mid \mathbf{1} \mid \gamma_1 * \gamma_2 \mid \mathbf{ref}_c$$

 \blacktriangleright A content type function $\mathit{ctype} : \mathbf{S} \rightarrow \mathbf{G}$ Example

 $\mathbf{S} \coloneqq \{\texttt{ptr}, \texttt{data}, \texttt{linked_list}, \texttt{list_cell}\}$

 $\begin{array}{lll} \textit{ctype} \; \texttt{ptr} &= \mathbf{ref}_{\texttt{ptr}} \\ \textit{ctype} \; \texttt{data} &= \mathbf{bool} \\ \textit{ctype} \; \texttt{linked_list} = \mathbf{1} + \mathbf{ref}_{\texttt{list_cell}} \\ \textit{ctype} \; \texttt{list_cell} &= \mathbf{ref}_{\texttt{data}} * \mathbf{ref}_{\texttt{linked_list}} \end{array}$

The category $\ensuremath{\mathbb{W}}$

Objects: Heap layouts/worlds $w = \{\ell_1 : c_1, \dots, \ell_n : c_n\}.$

Morphisms $\rho: w \to w'$: label preserving injections $\rho: w \rightarrowtail w'$

The category ${\mathbb W}$

Objects: Heap layouts/worlds $w = \{\ell_1 : c_1, \dots, \ell_n : c_n\}.$

Morphisms $\rho: w \to w'$: label preserving injections $\rho: w \rightarrowtail w'$

Interpreting full ground types Set $\mathbf{W} := [\mathbb{W}, \mathbf{Set}]$ and define: $\begin{bmatrix} \mathbf{0} \end{bmatrix} \coloneqq \mathbb{O} \qquad \begin{bmatrix} \gamma_1 + \gamma_2 \end{bmatrix} \coloneqq \begin{bmatrix} \gamma_1 \end{bmatrix} + \begin{bmatrix} \gamma_2 \end{bmatrix}$ $\begin{bmatrix} \mathbf{1} \end{bmatrix} \coloneqq \mathbb{1} \qquad \begin{bmatrix} \gamma_1 + \gamma_2 \end{bmatrix} \coloneqq \begin{bmatrix} \gamma_1 \end{bmatrix} \times \begin{bmatrix} \gamma_2 \end{bmatrix}$ $\begin{bmatrix} \mathbf{ref}_c \end{bmatrix} w \coloneqq \{\ell \in w | w(\ell) = c\} \qquad \begin{bmatrix} \mathbf{ref}_c \end{bmatrix} \rho(\ell) \coloneqq \rho(\ell)$

Heaps

Heaplets

 $\mathsf{Define}\ \underline{\mathbb{H}}: \mathbb{W}^{\mathrm{op}} \times \mathbb{W} \to \mathbf{Set}:$

$$\underline{\mathbb{H}}(w^-, w^+) \coloneqq \prod_{(\ell:c) \in w^-} \llbracket ctype \ c \rrbracket w^+$$

Heaps

$$\mathbb{H}w\coloneqq\underline{\mathbb{H}}(w,w)$$

Ohad Kammar, Paul B. Levy, Sean K. Moss, and Sam Staton

Independent coproducts [Simpson MFPS'17] We have morphisms: $w_1 \xrightarrow{\iota_1^{\oplus}} w_1 \oplus w_2 \xleftarrow{\iota_2^{\oplus}} w_2$ in W

Canonical isomorphisms

 $\blacktriangleright \ \mathbb{H}^{\oplus}: \underline{\mathbb{H}}(w_1, w) \times \underline{\mathbb{H}}(w_2, w) \xrightarrow{\cong} \underline{\mathbb{H}}(w_1 \oplus w_2, w)$

$$\blacktriangleright \mathbb{H}^{\emptyset} : \mathbb{1} \xrightarrow{\cong} \underline{\mathbb{H}}(\emptyset, w)$$

Complements

For $\rho: w_1 \to w_2$, set $\rho^{\complement}: w_2 \ominus \rho \to w_2$ as the inclusion:

 $w_2 \setminus \rho[w_1] \subseteq w_2$

Initialisations

The category ${\mathbb E}$ of initialisations

Objects: Heap layouts/worlds w

 $\text{Morphisms } \varepsilon: w \to w': \text{ pairs } \varepsilon = \langle u \varepsilon, \eta_\varepsilon \rangle \text{ of:}$

• injection $u\varepsilon: w \to w'$

▶ initialisation data $\eta_{\varepsilon} \in \underline{\mathbb{H}}(w' \ominus u\varepsilon, w')$

Initialisations

The category \mathbb{E} of initialisations $u\varepsilon(\ell_1)$ Objects:Heap layouts/worlds wMorphisms $\varepsilon : w \to w'$: pairs $\varepsilon = \langle u\varepsilon, \eta_{\varepsilon} \rangle$ of: \bullet injection $u\varepsilon : w \to w'$ $u\varepsilon(\ell_2)$ $u\varepsilon(\ell_3)$

 \blacktriangleright initialisation data $\eta_{\varepsilon}\in\underline{\mathbb{H}}(w'\ominus u\varepsilon,w')$

Composition

Initialisations

 \blacktriangleright initialisation data $\eta_{\varepsilon}\in\underline{\mathbb{H}}(w'\ominus u\varepsilon,w')$

Heap functor

$$\mathbb{H}w = \underline{\mathbb{H}}(w, w) \cong \mathbb{E}(\emptyset, w)$$

so \mathbb{H} is a representable functor in $\mathbf{E} \coloneqq [\mathbb{E}, \mathbf{Set}]$

Comma category

 $\begin{array}{ll} \text{For the forgetful } u: \mathbb{E} \to \mathbb{W} \text{, the comma } w \downarrow u \text{ is:} \\ \text{Objects:} & \mathbb{W}\text{-morphisms } \rho: w \to w' \\ \text{Morphisms } (\begin{array}{c} \rho_{1\downarrow}^{w} \end{array}) \xrightarrow{\varepsilon} (\begin{array}{c} \rho_{2\downarrow}^{w} \end{array}) \text{: Initialisations } w_{1}' \xrightarrow{\varepsilon} w_{2}' \text{ s.t.} \end{array} \end{array}$

$$w \xrightarrow[\rho_2]{\rho_1} w_1 \\ \downarrow u\varepsilon \\ \psi_2 \\ \psi_2 \\ \psi_2$$

The hiding monad $P : \mathbf{E} \to \mathbf{E}$

Object map Define for $A \in \mathbf{E} = [\mathbb{E}, \mathbf{Set}]$:

$$PAw \coloneqq \int^{w \to w' \in w \downarrow u} A$$
$$\coloneqq (\sum_{w \to w' \in w \downarrow u} Aw') / \sim$$

In $[\rho:w\rightarrow w',x]\in PAw$ the locations in $w'\ominus\rho$ are private to x

The hiding monad $P : \mathbf{E} \to \mathbf{E}$

Functorial action of PAFor $\varepsilon: w_1 \to w_2$ in \mathbb{E} :

$$\begin{array}{l} PA\varepsilon : PAw_1 \to PAw_2\\ [\rho: w_1 \to w', a] \mapsto [\varepsilon^*\rho, A(\rho^*\varepsilon)(a)] \end{array}$$

The hiding monad $P : \mathbf{E} \to \mathbf{E}$

Functorial action of PAFor $\varepsilon: w_1 \to w_2$ in \mathbb{E} :

$$\begin{array}{l} PA\varepsilon : PAw_1 \to PAw_2\\ [\rho: w_1 \to w', a] \mapsto [\varepsilon^*\rho, A(\rho^*\varepsilon)(a)] \end{array}$$

See paper for return, bind, etc.

State transformer

Enrichment

 $\mathbf{E} = [\mathbb{E}, \mathbf{Set}]$ is enriched over $\mathbf{W} = [\mathbb{W}, \mathbf{Set}]$ with tensors:

$$\begin{split} X \odot A \coloneqq (X \circ u) \times A \\ (A \multimap B)w \coloneqq \int_{w \to w' \in w \downarrow u} Aw' \Rightarrow (Bw') \end{split}$$

(directly/as a W-actegory [Gordon-Power'97, Janelidze-Kelly'01]) A monad for full ground storage (following [Egger et al.'14]) Take $T := \mathbb{H} \multimap P(- \odot \mathbb{H})$

For every $X \in \mathbf{W} = [\mathbb{W}, \mathbf{Set}]$:

$$TXw \subseteq \prod_{w \to w' \in \mathbb{W}} \mathbb{H}w' \Rightarrow \left(\sum_{w' \to w'' \in \mathbb{W}} Xw'' \times \mathbb{H}w''\right) / \sim$$

The monad

$$(TX)w = \int_{w \to w' \in w \downarrow u} \mathbb{H}w' \Rightarrow \left(\int^{w' \to w'' \in w \downarrow u} X \circ uw'' \times \mathbb{H}w''\right)$$

Contribution

- Heaps functor over initialisations.
- A hiding/encapsulation monad over initialisations.
- A full ground references monad.
- Its decomposition into a global state transformation on the hiding monad.
- Evaluation:
 - An effect masking property.
 - Adequate semantics for a call-by-value calculus for full ground references.
 - Validation of the local state equations. [Plotkin-Power'02, Staton'10, Melliès'14]

Constant functors

Functors $X \in \mathbf{W}$ whose action $X\rho$ is a bijection.

Theorem (effect masking)

For every pair of constant functors $\Gamma, X \in \mathbf{W}$, every morphism $f: \Gamma \to TX$ factors uniquely through the monadic unit:

Interprets a multi-monadic-metalanguage with a **runST** construct [Launchbury-Peyton Jones'94]

Proof.

and chase a generic morphism upwards.