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Notation.

S denotes the category of sets and functions,

Co denotes the opposite or dual of a category C.

Nat(F,G) denotes the class of natural maps from F to @.

R denotes the ring of real numbers,

Q denotes the ring of rational numbers.

Algebraic theories will be denoted by capital italics A, B, ....

For an algebraic theory A : -

A the fundamental object.

A the coproduct LS_L AL

o S(A) the set of S-ary operations, i.e, HomA (Al’ AS).
Z(A) the centre of A,
A the category of A-models and homomorphisms,
[A,A] the category of (A, A)-bimodels and homomorphisms,

{A} the category of primitively generated (A,A)-bimodels.

UA the forgetful functor Ab ——>§
FA the free A-model functor 5 — Ab.
I the full embedding A —s Ab .
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Introduction.

These notes have their origins in a lecture course given at the
Matematisk Institut at Aarhus in the Autumn of 1969. The lecture notes for this course
were. published as No. 22 in the Aarhus Lecture Notes series, and they contained a
large number of mistakes, mostly due to the emphasis I had placed on formalism at
the expense of foundational rigour. Iam particularly grateful to Professor J. Isbell

for pointing out some of these mistakes, and for his helpful letters.

1 felt there was a need for notes which treated the topic of universal
algebra in a categorical way, aimed at the postgraduate student who is beginning
research. There are books on category theory which mention this topic in passing
{-_Maclane 3, Pareigis] and there are books on universal algebra which do not use
category theory very much [Cohn, Grétzer], but there are no books (yet) which
exploit the simplicity of the categorical approach to universal algebra, pioneered by

Lawvere, Linton, Freyd and others.

I could have gone the whole way by developing the topic of universal
algebra in terms of monads. For compactness of formalism this is undoubtedly the
way to go. However, I believe that the approach given here, based on algebraic theories,
is more readily comprehensible to the reader who is accustomed to classical algebra,
No treatment of algebraic theories can be complete without mention of monads. Since
the theory of monads has been expounded at length in many texts [Eilenberg and Moore,

Kleisli, Linton 2, 3, Maclane 3] I have merely given an outline in § 6.
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My intention in writing these notes is twofold; first, to provide an
introduction to algebrait: theories, and second, to bring the reader to a point where
he can ask himself hitherto unposed questions which arise rather naturally. It is for
this reason that the last sections are left hanging in the air; it is for the reader to

carry them further. Ihave included exercises which I hope will suggest tangential

developments for which the text has no room.

In the last few decades categorical methods have been invading more

and more branches of mathematics. From the beginning, it was clear that universal
algebra was ripe prey. To paraphrase, one could say that universal algebra is the
study of algebraic systems defined by operations and by universal sentences which
relate these operations. For example, rings are defined by operations called
"multiplication?, fadditiont etc., and laws relating them e. g., associativity,
distributivity. This was the classical approach. The laws were expressed by using
variables. In the categorical approach, we would say that (many-sorted) universal
algebra was the study of limit preserving functors - we shall not consider systems

of quite such generality. Instead of variables we have the categorical notion of product.

Instead of laws we have commutative diagrams.

The classical approach suffered from one or two disadvantages. One
of these was the distinction between primitive and derived operations. One is often
introduced to, say, groups as sets with a binary associative operation, a nullary
operation for two-sided unit, and a unary inverse operation. These would be described

as primitive operations, and the 3-ary operation

2 -1
> x"yz T x

X,¥,2)

e described as a derived operation, because it can be built up in terms of the
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primitive ones. In an algebraic theory there is not such distinction. All the operations
are treated on the same footing, and while it is true that certain collections of operations
may generate all the rest, no particular generating collection is singled out. In this

sense, algebraic theories are defined independently of any particular presentation.

Classical algebra relies heavily on the use of variables to express
complicated expressions. In category theory, the role of a variable is played by an
identity map. In an arbitrary category, objects do not have elements, so, if we use

variables, we must not imagine that they stand for elements.

There is a subtle point of notation which the reader should be aware of:
we shall think of an S-ary operation not as a function of S-variables but as a function
of one variable, whose values are S-indexed families. The order of the variables is
entirely spurious, and arises from the fact that the sets {1, 2, e s n} have a natural
crder relation on them - this is a matter of psychology and the linearity of our

writing system rather than of mathematics.

#e shall use two notations. If X and S are sets, and XS denotes
the set of functions from S to X, we shall say that a function c: XS —> X 1isan
S-ary operation on X, If § is a function from S to X we obtain an element ()

in X,

Alternatively, we may wish to emphasize that the function ;’ : 8§ —X
determines an S-indexed family of elements of X, x = g (=) for o € S. In that case
we denote «(§) by wW%s . The upper case suffix ¢ in > is purely symbolic;
it 15 a dummy suffix telling us what w is to operate upon. This symbolism has various
advantages; we might, for example, have a double suffix notation x,_. , < € S and

7 € T, sothat W Xz would be a T-indexed family of elements of X. ¥ « is
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an S-ary operation and ¢ isa T-ary operation, the statement ".. and £ commute!

may be expressed hy

wTO s FeT

for any S « T-indexed family {VXUYC } .
This notation provides a convenient half way house between the *functions of many

variables® approach and the *functions of functions?® approach.

One of the central themes of these noteg is the rings-theories analogy,
first suggested by F. ¥. Lawvere [ Lawvere 2] . Suppose that R is a ring {with unit,

as all rings will be here, but not necessarily commutative). A left R-modile is simply

an abelian group with the elements of R acting as unary opera

certain rules. It is clear that R-modules are algebraic syste

in universal algebra. The algebraic theory of left R-modules |

by R, and conversely. This suggests that we should think of

It is worth underlining the advantages of a

established mathematical practice - abuse of language.

in a mass of unnecessary precision and a superflut

symbols and suffixes. For example

T a ring

3

%157, or for

the free R-bimodule on mat I shall

adopt and generalise. <, I may appear

funect..,
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The point I am trying to stress is that precision for its own sake can conflict with

the requirements of easy reading., On the other hand, there are some confusing points

where precision is vital. For example, a 2-ary operation

(xl, xz) —_— f(xl, x2)

determines a 3-ary operation

(xl, Xy X y — f(xl, X

3 2)

and it is most important to distinguish between them.

In § 1, algebraic theory and model of an algebraic theory are defined.

We will use coproducts rather than products for notational convenience. Our theories
are not small categories - they contain operations of arbitrary arity. Instead of
truncating our theories, we consider bounded theories. This makés the construction

of free models in § 2 a little simpler. All the nasty things that can happen to algebraic
theories arise, generally speaking, from unboundedness. A theory is bounded if it is
generated by a set of operations (whose arities are therefore bounded by some cardinal).
A small point is worth mentioning here; we shall invoke the principle of abuse of
language quite often by not distinguishing between a set and its cardinal when it comes

to the notion of arity.

In § 3 we pause in the development of the subject to consider some
special theories, 1 , 2 and § and some special kinds of theories, nullary, affine,
unary and annular. In § 4 we study the existence of limits and colimits in algebraic
categories. First we construct limits, and, in particular, congruences. Using these
we can construct coequalizers. Using these, and the fact that theories are categories
with coproducts, we can construct coproducts. The contents of this section must have

occurred in many texts; we have adopted a complicated but elementary programme
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at this stage, rather than use the simpler but more abstract methods of monads.

In §5 we meet maps of theories, and the adjoint pair of functors they
induce between the categories of models. The notion of map of theories is clearly

important, yvet is relatively unexplored.

8§ 6 is a brief outline of the relevance of monads and tripleability.
In §7 we study structure-semantics adjointness very superficially - deeper studies

may be found elsewhere.

In §8 we meet bimodels and tensor products of bimodels, concepts of
fundamental importance. In 89 we study algebras over theories. If A isa theory,
an A-algebra is defined to be a monoid in the monoidal category of (A,A)-bimodels.
An A-algebra X gives rise to a theory which we denote by the same letter, and a
map of theories A —=> X, which we call an essential map. We show that a map of

theories is essential if and only if the associated forgetful functor has a right adjoint.

In § 10 we look at commutative theories. The rings-theories analogy

works particularly smeothly here, In § 11 we construct free theories using trees,
theories

The construction is rather redious, but necessary if we are to describe‘by means of
presentations in terms of generators and relations (i. e. operations and laws), which
they generally are in practice. § 12 follows 84 very closely. We consider congruences
on theories, and we note that the construction for coproducts of theories breaks down in
the unbounded case. Ve discuss the semantic interpretation of the product of a family

of theories, and the coproduct of a family of bounded theories. § 13 introduces the

Kronecker product of bounded theories, and 8§14 and § 15 develop ideas suggested by

eralization of ‘e

notion of matrix ring.
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It has been pointed out by Professor Linton that with our definition of
model, an isomorphism of models can induce the identity map on the underlying sets,
and yet not be an identity map. This arises from the fact that we have not chosen
canonical products, and seems a small price to pay for not doing so. It is as if we

distinguished between two identical models when we use different coloured ink for the

brackets round n-ples of elements!



The tensor product symbol ® has been somewhat overworked in
these pages. We use it in the following contexts, each in some sense a specialization

or generalization of the others: -

(i) tensor product of bimodels.
(i) Kronecker product of theories.
(iii) tensor product of algebras over a theory.

(iv) tensor product of models of a commutative theory.

The diagram

) = 1) —= <)
4

ey}

may be interpreted by translating === as %is a general case of —",

However, the uses of the symbol @ are consistent with each other, in accordance

with the principle of abuse of language. In particular, see [Freyd 7 .




81, Algebraic Theories

Definition 1, 1 An algebraic theory (or simply, theory) is a category A,

with all coproducts, such that every object is a coproduct of copies of a fundamental

object A 1

This means that every object of A has the form AS for some set S, where A s

denotes the coproduct of a family of Al's indexed by 8. The object A)z will be

an initial object. If the set S is nonempty, and o € 3, we write

S
Sa ¢ Al———ﬁAs

for the canonical map into the coproduct of the ¢ -th factor. To recapitulate
the definition of coproduct, if
f

i
{A ——-—>A,_}
1 TlereS

is an S-indexed family of maps in A, then there is a unique map

<f,>
AS ———— Ar
such that
S
S~ <fe> £
Al AS AT = A1 —_— AT

for each o in S,
We shall write composition of maps in A in the same order as they appear in the

diagrams, so we write the equation above as

For any function S ——g—> T between two sets S and T we have a map
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in A, defined uniquely by the condition that for all o in S

~8 T
LA = )
Sor B8

In this way we get a functor

S—> A : THAT,g!——eA‘r,
o

which preserves coproducts. We shall see later that this functor is faithful in all

but two cases. We call a map in A of the form A function-like.
o

Definition 1.2 If A is a theory and S is a set we call a map

A > Ag

in A an S-ary operation of A. We will also use the notation
A
’OS( )
for the set HomA(Al,AS) of S-ary operations of A. The basic properties of

coproducts imply that the set

Hom, (A ,Ag)

S

is naturally isomorphic to the set of functions

T ——eQS(A) .

A bijection S —> S' gives an isomorphism AS——> AS" and hence a bijection

(A). It follows that A is completely determined by the sets




Notice that if the set S is nonempty, so is the set (@] S(A), because it contains

S 5 for some element o of S. However, Q’zj(A) may or may not be empty,

Definition 1.3 Let A be a theory, and let C be a category with products, An

A-model in C is a product preserving functor

A°—c.

That is to say, it is a contravariant functor from A to C which takes coproducts
in A toproductsin C. A homomorphism between two A-models ia 2 natural

map.

We shall chiefly be concerned with the case C = S, in which case we shall talk

simply of A-models, rather than of A-models in 8.

Suppose that

A ——C

is an A-model in C. Then we may identify X(AS) with 7_/_ X(Al)’ and we
shall do this from hereon without comment., In particular, x<gf) may be

identified with the projection to the o —th factor,
lsl X(A) = XAy —>X@A).

The object X(Ap) must be terminal in C.

For any S-ary operation of A, and A-model X in C we have a map

Xe) 2 TTX@A) —— X))
S



which we call the action of .5 on X. It should be clear that X is uniquely
determined by X(Al) and by the actions X¢u). We call X(A 1) the- underlying
object (or set in the case C = 8) of X. The condition that X be a functor ensures
that the actions X(w) satisfy certain conditions, which may be described by the

collection of commutative diagrams in A.

When C =8, we will denote the action X(a) of a map

in A, for an A-model X, by
$ b a.f §e7;TX(A1>.

This notation is consistent in the sense that of the composite a'.c« is defined in

A, then

(a’.oz)§ = a’.(cz.;) .
In this way we get a notation reminiscent of that of a monoid acting on a set, Since
we have categories rather than monoids, multiplication is not always defined;
further, the elements ; do not simply come from the underlying set of the
A-model X but from Cartesian powers of it, However, this is a small price to pay
for the enormous advantages of this notation over the classical functional notation,
which is hard put to it describing anything more complicated than a binary operation,
What we have done is adopt a notation whereby operations all stand to the left of

their arguments. For example, in the theory of rings, instead of writing
a+b or axb

we write + (a,b) or x(a,b). An expression like




a X by + {c x d)

would come out +. <X,x>. (a,b,c,d). Inthis way we can employ the <...>

notation for coproducts of maps in a theory to denote composite operations.

Le. us consider the action of function-like maps in a theory, Let S —5 .7

be a function, A atheory, and X an A-model. We obtain a function

X(Ag) :’ I X@A) — /[X(Al) .

T S
The effect of this function is as follows: we may identify an element of

XA l} with a function

T

T —> X(Al) s
and this gets taken by X(Ag) to the composite

SLT-—ﬁX(Al).

5

if g 'is injective then X(Ag) has the effect of "forgetting" some of

, i.e, those indexed by elem.ents of S not in the image of g. If g
£ surjective, no variables are forgotten but some may be repeated, If g is a

ction, the variables are simply permuted, In this way, the function-like maps

sf A4 perform a useful book-keeping service.

For example, when A is the theory of rings, the 4-ary operation
2
(a,b,c,d) ——=b +ac

could be described as

+., <X, X>. A

where g: {1,2,2,1% —> {1,2,3,4} isgivenby gl)=g@2) =2,
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Suppose now that X —@-> Y is a homomorphism of A-models., Since & is
a natural map, for each set S and "S-ary operation w eﬂ_s(A) we have a

commutative diagram

_ ng _
T x@) [Ty
S S
X() l ) i Y()
O,
X(Al) Y(Al) -

s —
By taking w = 4 for each o ¢ S, we see that QA is just / / ﬁA . It

-
) 5 s 1
follows that & is uniquely determined by the map h = @A and that any map
1
h: X)) —> Y@A)
for which the diagram
TTh
— S —
TUXA) I YA)
S ’ S
X ) Yeo)
X(A h YA
Aap A

commutes for all sets S and w ¢ QS(A), determines a homomorphism X ——= Y,
If % € TTX(Al) and X —L Y is a homomorphism we denote the image of ;7

s
under TT@A by /?. £ . The commutativity of the diagram above can now be

S 1
expressed:

o .(?,9) = (w.§).9

or

"homomorphisms commute with operations” .

A particular consequence of the remarks above is that for any pair of A-models,

X,Y the homomorphisms from X to Y are in bijective correspondence with a



subset of the set of functions from X(Al) to Y(Al). Hence, A-models and their

homomorphisms form a category, which we shall denote by Ab.

cps . b . X
We will write composition of maps in A~ in the same order as the arrows in
diagrams, so that if £,6' are composable maps in Ab, then, with the notation
above,

§.08 = £.Be) .

The assignments X }— X(A)), g b QA define a functor
1

known as the "forgetful” functor, because it forgets A-model structure. The
remarks above about a homomorphism being determined by its underlying function

give us the following: -

Proposition 1,4 The functor

b )
is faithful, If ¢ isamapin A suchthat UA(E) is bijective, then & isan
isomorphism. If T is asetand X is an A-model, then for every bijection
¥ &

T ———-> UA(X) there is an A-model Z and an isomorphism Z ———> X in

Ab such that UA(Z) = T and UA(g) =Y.

We leave the proof to the reader. This proposition is usually expressed by saying

that U A reflects and creates isomorphisms.

We shall refer to categories of the form Ab for some algebraic theory A as

algebraic.



Exercises 1
=LElclses 1

1. Express the axiom of distributivity of multiplication over addition as a

commutative diagram in the theory of rings,

2. If a,bc are elements of a group, let
-1
<a,b,e> = ab ‘¢,

Show that for all a,b,c,d,e the relations

<2,a,b> = <bya,a> = b
<<a,d,c>, b,e> = <a, <b,c,d>,e> = <a,d, <c,b,e>>
hold.

Is the algebraic theory defined by a 3-ary operation satisfying these laws

the theory of groups?

3. Give an example of an operation in the theory of groups of infinite arity,



§2. Free models
Let A be an algebraic theory, For any object AS in A the functor

HomA(-,A )t AO — 8

S

is product preserving, and so is an A-modei, A map

gives rise to a natural map

HomA(—,a) : HomA(—,As) — HomA(—,A T)

and so a homomorphism of A-models. In this way we get a functor

b
IA. A —> A aHHomA(—,a).

In 81 we remarked that we had a functor

Iat S§——A g — Ag
We denote by
F Al §—— Ab
j I
the composite S A A A Ab .
Theorem 2.1 The functor FA 1 S—> Ab is left adjoint to the forgetful
b

functor UA: A —> 5 .

Proofs Let S beasetand X an A-model, Using the Yoneda lemma, we have

the following sequence of natural bijections:
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il

Hom | (F,(8),X)

by definition of F ,&(S)
£

and definition of

= Nat (HomA(—,AS), X) homomorphisms
= X(AS) by Yoneda lemma;
=z T/ XA ) by definition of A-models
S
= Hom§ (S, UA(X)) by definition of UA .

Let us analyze in more detail the adjoint pair of functors (F,,U ).

A’ A

UA F, S) = HomA (Al,AS) =1 5 @) .

The front adjunction

“Jgt S——=U, F, (5)

is givenby & b—s 85 , for ~ €8, The end adjunction

&
x? FAUA(X)-ﬂX

U, X)
is the unique homomorphism taking 5 % to x, for x¢ UA (X).

from this description that U, (¢ X) is surjective for any X,

A

First, note that

It is clear

Suppose that X is an A-model, and that M is a subset of UA(X). Adjoint to the

inclusion function

M— U, (X

there will be a unique homomorphism, by theorem 2, 1,
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FA(M)—C——> X .

If UA(€) is surjective, we shall say that the set M generates X. Every A-model
X has a generating set ; indeed, the remarks above show that UA (X) is always a
generating set. The point is that there may exist smaller generating sets. If «

is a cardinal we shall say that X is c-generated if it has a generating set of
cardinality less than «.

If the subset M of UA (X) generates X, then every element of UA (X} may be written
as g where ; is a family of elements of M. Indeed, the definition shows that
we may take % to be a certain fixed family, namely the M-indexed set of elements
of UA(X) whose m-th member is m itself. We see that UA () defines a surjection
from .7} M(A) to UA(X).

We say that M generates X freely if the expression for a general element of

UA(X) as ; is unique, i.e. if every element is a unique expression in terms of

U, &)

the generators. This means that UA FA (M) > UA(X) must be bijective, and

50 by lemma 1. 4, the map FA(M) £—> X is an isomorphism,

This leads us to make the definition: an A-model is free if it is isomorphic to a
representable functor, i.e, one of the form HomA(—,AM) = FA (M) for some set M.
We may now restate theorem 1.2 in more familiar terms: -

Let X be an A-model freely generated by a subset M of UA(X), and let Y be an
A-model. Then every function from M to UA(Y) 1ifts uniquely to a homomorphism

from X to Y.

Recall that we have a functor

I,:s A—>A a I»—)»HomA(_,a)_
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The Yoneda lemma tells us that this functor is full and faithful, This gives us the

followings

Theorem 2.2 An algebraic theory A is equivalent to the full subcategory of

free A-models.

In fact, this provides us with one of the easiest ways of describing an algebraic
theory, We have only to know what the free models are to know the theory. Let us
look at an example from the theory of groups (let us call it Gp). A homomorphism
from a free group on one generator u to a free group on three generators, X,y,Z

is uniquely determined by the image of u; suppose it is x2 z_l xy. What we have
established so far tells us that this should correspond to a map (Gp)1 — (Gp)3 in
Gp (here 1 and 3 stand for one element and three element sets). Buf such a map

corresponds to a 3-ary operation, Clearly, this is the operation
- 2 -1
(gl’bz’gs) > g, 8 818y -

b
It may be convenient to identify the category A with its image in A~ under I A
In that case we write AS in place of FA(S).
Then, if S is a set, an S-indexed family of elements of an A-model X is given by

a map

and if AT 2 AS isa 7 -indexed family of S-ary operations, the composite in Ab

AT—L'_)A ——S—»X

S

clearly gives « g , So our notation is consistent, By this means we can put operations
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(compose on the left) and homomorphisms (compose on the right) into one category.

In the theory of, say, rings, every element of a ring can be expressed by means of
finitary operations on a set of generators of the ring. The analogue of this statement
is not true for an arbitrary theory. If « is a cardinal, we shall say that a map

A - — A s in a theory A is «-bounded if it factors through a function-like map
A

AM—————g———-> AS’ where M is a set of cardinality less than «. We shall say that an
algebraic theory A is a-bounded if every map in A is a-bounded. TFinally, we shall

say that an algebraic theory is bounded if it is a-bounded for some cardinal a.

Proposition 2.3 If A isan ¢-bounded theory, and X is an A-model then every
element of U A(X) can be cxpressed as the result of applying an operation of

less than o« to a family of generators,

Proof, Let M be a set of generators of X, and let %’ be the M-indexed set of
elements of UA(X) whose m-th member is m. We have seen that every element
of UA(X) is expressible as wg where (o € QM(A). By assumption, for a
given «> there exists a set N of cardinality less than « and a function

h: N——> M suchthat w =.5., A, for some wy € O N(A). Thus

1 h
w g =@ (A ). But Ahg is just an N-indexed set of generators,

It is worth remarking that an algebraic theory A is not a small category, For that
reason we forbore to speak of the category of set-valued functors on AO. However,
many of the unpleasant consequences of the fact can be avoided by restricting attention
to bounded theories. Ciassical universal algebra generally confined itself to finitary

i.e. Y1 -bounded) theories.
{ A
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Note that if the term «-bounded is to make much sense, we must restrict attention

to regular cardinals 5 that is to say those with the following property: - the cardinal

o' is regular if given any family Ti it of sets of cardinality less than o

indexed by a set 1 of cardinality less than « then U Ti is a set of cardinality less
iel
than «.

The cardinals 2 and %0 are regular, The reader is invited to work out for himself

what 2-bounded theories must be like.
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Exercises 2

1. Let Conv be the category whose objects are finite dimensional closed
simplexes, and whose maps are linear maps of one simplex to another,
Show that Conv is an algebraic theory, and that any convex subset of a

Euclidean space is a Conv-model.

2, Let RJr denote the extended half real line, i.e. the set of positive real
numbers together with a symbol =, If LIPLPETRE is a countable

+ [=<]
sequence of elements of R , define 2 T to be the limit of the
1
sequence T, rl+r2, rl+r2+r3,.,° if it exists, and « otherwise,
+
Define a theory of "abelian monoids with countable sums" for which R

is a model.

3. Let CH denote the category whose objects are Stone-Cech compactifications
of discrete spaces, and whose maps are continuous functions.  Show that

CH is an algebraic theory. Show that CH is not bounded.

4, Formulate the concept of a topological algebraic theory, Show that Conv

is a topological theory is a natural way.
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g 3. Some Special Theories,

In any subject there is a struggle between the general and particular.
Examples are needed to illustrate and motivate the general theory. The general theory
is needed to provide a descriptive languaze to discuss the examples with. At this point
we hold back the tide of abstraction to congider some examples of theories. Generally,
speaking, the examples will suggest furthe; definitions and conditions upon theories
which generalize the properties holding true for the example in question. These bear
with them whole panoplies of mathematical motifs, tedious to write down in detail, but

clear enough after one has had a little practice with them.

Example 1. The category S of sets and functions is an algebraic theory, since it
has coproducts, and every set is a coproduct of 1's, where 1 denotes a fixed singleton

set.

Suppose that F : §O ——> 8 isan S-model. Then for any set 5,

~ it ' ~
()= F(H 1>_TSTF<1> Hom (S, F (1)),

so that F is a free _S_;-model. Thus

is an equivalence of categories. Note that

is simply the identity functor, so that

F§ © 8 ———>§b
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b

and hence US : 8 —> 8 is an equivalence of categories. From hereon we shall

identify an S-model with its underlying set. Ve shall say that § is a theory with no

nontrivial operations. The only i-ary ope rations are the maps 63 for te T.

Example 2. Let [ denote a category with precisely one map. I clearly has
coproducts, and for all sets S we have ls =1 1 1t follows that 7 is a theory.
Ve have seen that for any theory A and A-model X, the set X(A) has to be

terminal, i.e. a singleton set. Since ﬂ_l = ﬂ;ﬁ , a f-model is a singleton set.

Example 3. Let 2 denote the category with two objects Z, and 2, , and precisely
one non-identity map, from fyﬁ to £, . Then every object of 2 isa coproduct of

copies of 4, . To be precise

L1z, =1 if S# of
S

L2, = 2,

&

I S# &, all the maps o?_ agree, so 2 2 -model is either a singleton set or empty.

Theorem 3.1  If the theory A is neither 7 nor 7 | then

is a faithful functor,

Proof. Suppose jA is not faithful. Then there exists a set S with at least two

S S

elements q 2 CT such that C‘I;éc*z but 60_1 = 6(/(2 in A, Let f and g be
T-ary operations of A, and let f'h c_}c—tg be an S-indexed family of T-ary
operations such that h_ =f and hc— = g, Then:
1 2
f = és > = 5ﬂ h,>=
=0 <h,> = <h,>= g.
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Hence, if there is a T-ary operation, it is unique. Thus, A =2 if sx(A)= ¢ and

A=] if D@ £2.

Tt follows that, with the two exceptions 7 and 2 , every aigebraic theory
contains a subcategory equivalent to S. Just as some ring theorists like to rule out

the zero ring, some authors like to rule out 1 and 2 .

Let us look at nullary operations in more detail. A nullary operation of
a theory A is an element of _@g(A). The action of a nullary operation Ae Q}A (A) on

an A-model X is a function
Xy @ Xpg) ——> X(Al).

But X(Ay)isa singleton set, so X()) determines an element of UA(X) (which we

usually write simply as A ).

We know from §2 that FA(z‘), a free A-model on no generators, has
the set of nullary operations as its underlying set. Since FA has a right adjoint it

preserves colimits, and so, as ¢ is an initial object in §, FA(;A) ig initial in Ab.

Proposition 3.2,  The empty set has an A-model structure if and only if A has no

nullary operations.

Proof. If A has no nullary operations, then UAFA(;A) =Qp(A) =#. Conversely, if
X is an A-model such that UA(X) =g, since there is a (unique) homomorphism

FAM) —= X, it follows that UAFA(¢) =g,

Note that for any theory A, the constant functor

taking the value of a singleton set, is always an A-model, and that this A-model is
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. . b
terminal in A",

By a zero object we mean an object that is both initial and terminal.
. . . b . .
Proposition 3. 3. If A is an algebraic thoery, then A~ has a zero object if and only

if A has precisely one nullary operation.

Proof. Ab has a zero object if and only if FA(;a) ~ 1.

A

T;> a nullary operation A1 —_ A)(S we may associate, for any set S, an S-ary
operation
A a > A > A
1 > S
where Ay -—> AS is the unique map. In classical universal algebra little distinction

was drawn between them; here the distinction is vital. Of course, the S-ary operation

A
A1 > AV" —_—— AS has an action given by a constant function taking the value A .

Though the distinction between them may seem pedantic, for the construction below it

is obviously important.

For any theory A, let A denote the category obtained from A by
removing all maps into A;A- To be more precise, A has objects KS’ and maps
given by: -

HomK(AS’AT) = HomA(AS, AT) T#@B#S
= & T=2.

Compositon of maps in A is defined asin A. Because a union of empty sets is
empty, it follows that A isa theory with no ... ..cy operations., The nullary operations

of A still leave their trace. For example, if S# ¢, a composite

A1 >A¢——-—>AS
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gives rise to a map Kl — ‘K‘S’ though of course it no longer factorizes through K)z .
A little thought should convince the reader that Kb is obtained from Ab by adjoining

a single model, the empty set. For example Ep is the theory of groups, with axioms

so chosen so as to allow the empty set as a model.

Now we turn our attention to unary operations. For any theory A, the set
_Ql(A) of unary operations of A, has a natural monoid structure, with composition of
operations as multiplication. Conversely, given a monoid G, we may define a
2-bounded theory, which we shall also denote by G, such that (2, (G)=# and

QI(G) = G. These conditions determine the theory G completely. If S## an

S-ary operation of the theory G is of the form g. 65 for some <€ 8 and ge -_71 (G).

A G-model is simply a left G-set, and a homomorphism is a G-equivariant function.

Theories of this type we call unary. Modulo an abuse of language, unary theories are

monoids.

Proposition 3.4 If A# 1 and -Q;A(A) #%, then ) 1(A) is not the trivial monoid.

Proof. Suppose )€ Qﬁ (A), if QI(A) is trivial, then

is the identity map of Al’ s0 A¢ is isomorphic to A_. Hence A~ [ | a contradiction.

1

For any non-empty set S, the unique function § —>1 givesa

function -like map

AN A > A

S 1

whose action is to replace a variable x by the constant S-indexed family taking the
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value x. Ve call a map AS a>AT in A affine if

o A - pa\
>AT >A1 = AS

As

>A1 .

Thus, an S-ary operation is affine if when it acts on a constant S-indexed family of
elements equal to x it gives the result x. For example, in Gp, multiplication is

not affine, but the 3-ary operation (gl, o g?) > 8y g;l g, is.

Tt follows immediately from the definition that function-like maps are
affine, and that a composite of affine maps is affine. In fact the affine maps in a theory
A form a subcategory Aff(A), which is easily seen to be a theory in its own right. We

call a theory A affine if A = Aff(A).

Proposition 3.5. The following statements imply each other.
iy O 1B) is the trivial monoid.

(if)  The free A-model on one generator has ..iy one element.
(iit) A is affine.

Ne leave the proof as an easy exercise.

Suppose that K is a ring (with unit). Let us denote by Mat(K) the
- category of all free left K-modules and K-homomorphisms between them. Since every
free left K-module is a coproduct of copies of K itself, considered as the free left
K-module on onc generator, Mat(K)} is an algebraic theory. It is clearly a finitary
theory, and its models are left K-modules. If S and T are finite sets,
(Mat(K)S, Mat(K)T) may be identified with the set of SxT - matrices with coefficients

in K. Composition of maps corresponds to matrix multiplication,

An n-ary operation of Mat(K) is given by an n-ple (kl’ PO kn) of elements of K,

and its action upon a left K-module M is given by
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m,, ... , mn) ~——->k1m +...+tkm

1’ 1 nn’

We shall call a theory of the form Mat(K) for some ring K annular.
The holy principle of abuse of language suggests that we abbreviate Mat(K) to simply
K, using the same symbol for both ring and theory. Thus Z denotes the theory of
abelian groups as well as the ring of integers.

The symbolic equation
rings/modules ~ theories/models

will serve as an inspiration both for our terminology and for the questions we ask

ourselves about theories.

I am indebted to Jon Beck for the model-module pun. At this point the
alert reader could develop most of the rest of the book for himself, The reader is
limited to check for himself the consequences of any new definition or theorem for the

special class of annular theories, as a source of illumination.
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Exercises 3

Show that ? X~ Z

Vrite down operations and laws between them defining (_3;
Describe Aff(Z) and its models.

Show that an annular theory is a category with finite limits.

If G is a unary theory, show that UG has a right adjoint as well as a left adjoint.

If A is a theory for which UA has a right adjoint, show that A is unary.
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§ 4. The completeness of algebraic categories.

In this chapter we will show that for any algebraic theory A, the category
Ab of A-models is complete and cocomplete, i.e. that any diagram in Ab has a limit
and a colimit. The chapter splits naturally into two parts; in the first we will deal with
limits, and then in the second, using material from the first part, explicitly the notion

of congruence, we will deal with colimits,

Readers who are more interested in panoramas than close-ups are
advized to skip this chapter as it is long and technical. “Vere it not that some of the

techniques will be needed in later chapters, it would have been relegated to an appendix.

(i) Limits

Because the forgetful functor

b
has a left adjoint it must preserve any limits which exist in A~. This tells us that in
order to construct the limit of a diagram in Ab we must try to endow the limit of the
underlying diagram in 8 with an A-model structure. Suppose I is a small category

and that
E: I—A

is a functor, Let L be the limit of the functor

with projection maps P, L —— UA(E(i)) for each i € L 'We wish to put an A-model
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structure on the set L so that the functions P, define homomorphisms.

Ve define an A-model X as follows:

_—
Xag) = I/ L

For any map AS AN AT in A, we define X(a) to be the composite

_ . — b E7( (o) TTU E () — TT L
/T/L —_—r (?La:_w /7_/ L;\th) ,.__5;—_______.9<.141 é/%t{j > 3

where the outer maps are the canonical isomorphisms stating that limits commute with
products. It is immediate to verify that X is an A-model, that UA(X) =L, that the
projections I define homomorphisms X ——=> E(i), and that they make X a limit

of the functor E.

F X —s Y is a homomorphism of A-models such that UA(i) is the

inclusion of UA(X) as a subset of UA(Y) we call X a submodel of Y and write
X &Y.

It {ZU} is a family of submodels of an A-model Y, then the joint
pullback of the inclusions Z, < Y 1is again a submodel, which we der.t. -/

and call the intersection of the family fZ‘,j . Of course, we have
(_,//_\ (/V\ Zv) = O UA (ZV)

¥ s< UA(X), for X an A-model, we may form the intersection of all the submodels
of X whose underlying sets contain S. We call this intersection <S>, the submodel
generated by S. If <8>=X we saythat S is a set of generators of X. This agrees
with the terminology for free models introduced in 8 2, as proposition 4. 1. below

indicates. If X

s > Y 1is an arbitrary homomorphism of A-models, the subset
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ImUA(</€) of UA(Y) carries a natural A-model structure, making it a submodel of

Y which we denote by Imfﬁ . We obtain a factorization of ¢

p

X2 smp Loy

where UA(p) is surjective and UA(p) injective.
Proposition 4.1, I FA(S) L> X is the homomorphism adjoint to the inclusion
.
SzU A(X), then
Im 76 =<8> .
#Ne leave the proof as an easy exercise.

At this point we remind the reader of two simple categorical notions:

Definition 4. 2. An equivalence relation in a category C is a jointly monic pair
k
LN
K L
—_—
k
1

so that forany X in C,

<HomC(X,kO), HomC(X,kl)>
HomC(X,K) Homc (X,L) x Homc(X,L)

describes an equivalence relation on HomC(X,L). If C has finite limits we shall
abuse language and call the single map
<%k , k. >
K —0———1——> LxL
an equivalence relation. We may, of course, describe an equivalence relation internally

in this case, by means of pull-backs and the commutativity of certain diagrams. It
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follows that a functor which preserves finite left limits also preserves equivalence
relations. Hence, in particular, an equivalence relation on an A-model X is given
by a submodel T< X<X  such that UA(/") is an equivalence relation on UA(X).

The usual word for an equivalence relation in an algebraic category is a congruence.

Proposition 4. 3. An intersection of congruences is a congruence.
This follows from the fact that an intersection of equivalence relations is an cquivalence

relation.

Now we come to the second categorical concept : the kernel pair of a

f
map L —— M in a category is a pair of maps

dO §
K L
— >
d1
such that the diagram
d
Kk —2 o1
i
o, b
L ——> M

is a pullback. Any category with finite limits has kernel pairs.

Proposition 4. 4. Kernel pairs are equivalence relations.

Ve leave the proof as an exercise for the reader. We wish to show that the converse
holds in an algebraic category. Suppose that 77« XxX isa congruence on the
A-model X. Denote by UA(X)/UA(F’) the set of UA(}”) - equivalénce classes, and

by [x] the UA(T’)—cquivalence class containing x. Thus
(x] = [x]

if and only if (x, x") € UA(/").
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Let Zr(x(r,, X' )}a— € s be an S-indexed family of elements of UA(F), and let

ce e_QS(A). Since I’ is a submodel of X x X, it follows that

DT KLY = (e, )

In other words, if for all ¢"¢ S, [x ] =[x".] then [« X T :la"x1
Hence we may define an A-model X/77 by UA(X//") = UA(X)/UA(ﬁ) and by defining
(X/7){) by the formula

f[xfjfw ¢ — [ Tx, ]

It is clear that the projection x —— [x] defines a homomorphism

X — > X/ 77

. - e
whose kernel pair is the congruence / .

Qf/

For any homomorphism X —— Y, we denote by Ker *// the congruence

on X determined by the kernel pair of 7L . We have a factorization of

x —P2 o x/Kerf —F s mp 9

—> Y

where UA(p)’ UA(:P)’ UA(q) are respectively surjective, bijective, injective. It

follows that ¥ is an isomorphism.

Proposition 4. 5. It */ X \\9
Vs 2

is a commutative diagram in Ab, then Ker‘fé Kerf . Conversely, if T

1 and 772

- —
are congruences on X such that /71 = /2 then there is a commutative diagram

X
N

X/ ——s X/
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(ii) Colimits,

Now we turn to the construction of colimits. ILet

b
be a diagram in A . Let | be the intersection of all congruences on Y whose
underlying sets contain | (x¢ , x¥) [xe U, (Xx)} . Let Y—2s v/ 77

be the projection.
Proposition 4. 6. The diagram

——— T

> Y/ T
is a coequalizer diagram,

Proof. Let Y —6—> 7 be a homomorphism such that ¢£*%#€ . Then

{'(lxgb/x’ﬁV)/ %&L.i\()()} < L’A (/\/crf’)

and so /| <. Kerf. If y, ye UA(Y) are such that (v, y") e UA(77), then yf€ = y¥%,
so we may define a homomorphism Y/77 L Z by [ylp =yt . Then e =£0,

and since UA(’IT) is surjective, / is unique.

Now we shall give a canonical method of presenting every A-model as a

coequalizer of a pair of maps between free A-models. For any A-model X we write

Dy(X) = D (X)=A

A , .
U, (%) UF, U, (X)

these are objects of A. Note that

2
LDy(X)=F,U,(X), LD (X)=(F,U,)"(X).
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b
U D U,F,U, are functors from A~ to A, Now we

Of course, D0=3A a0 Dy =i ULF\ U,

use the fact that IA : A — A‘0 is full and faithful. Let

(Bgly 2 DyX) —>D (%)

O)X

be the unique map in A such that

L(G,)y) = &
AC0’x F,U, (X

and let (61)X=JAUA(€X). Then 60, 61 D, —— DO are natural maps, and we

1
. b
have the diagram of functors A~ — A :
60 .
D : Dl - . D0
1

> Ab. Let coeq denote the functor which

Thus IAD is a diagram of functors Ab

to a diagram of the type above assigns its coequalizer. Then we have a functor

coeq. IAD : A]D — A

Theorem 4. 7. The functor

> A

coeq. IAD A

is naturally isomorphic to thie identity functor.

Proof, We shall prove that
2 Ex ) ¢
(RUJX SA%x |, FU(x) S, x
FaUg (€x)

is a coequalizer diagram. Let us abbreviate it to

de &
— P
i
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Let XO AN Y be a homomorphism such that doﬁ = d167. It is sufficient to prove

h
that there exists a homomorphism X—>Y suchthat £h=¢, as the surjectivity

of UA(c‘) will ensure that h is unique. Define UA(h) by

U (X
A 5
> (6 o Y& .

X

UA(X

}
Remember that | 6 < <€ UA(X)

is a family of generators of XO' Every element

of UA(XO) is of the form

_ U x)
y=(,c‘5A

Xo-

« ~ - - -
where [N s(A) and ixL} ces € X(AS), for some set S. The homomorphisms

dd and d1 are given on the generators

- 6UAFAUA(}\)
y
N
of Xl’ by the formulae
UL
ydg = 6
Lo _X(
U, (X)
o AT
= =
yd1 y é X, .
. BRACS! U, (X) ,
Ne have «(x_h)= &%, (5 VW=yd E=yd & =5 & =( % )h,
& X, 1 0 wx e

so that h is a homomorphism. It foilows that &€ h =¢ , so the proof is complete, ¥e
have thus represented every A-model as a coequalizer of homomorphisms between

free A-models in a canonical way.

b
Now we use the diagram of functors D to construct coproducts in A"

Let fX'.‘g be a family of A-models. For each i€ I we have the diagram D(Xi)

iel

in A. From the coproduct of these diagrams in A, say A= _/ / DX.):
cex
L)y

NSO IS ¢ pe— ) 1) W 0 7
O D ) LL(s),, TL%(‘)
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u,
Let Y= coeq. IAA . The canonical maps of diagrams in A, D(Xi) —1—>A , give
v

rise to maps Xi -5 Y foreach i€ L e claim that these are the canonical maps

to the coproduct of the family {xl} s To see this, consider a family of homomorphisms

ie I
i
{Xi———_>z}i61

indexed by 1.

. We get a unique map of diagrams

D(Z)

making the diagram of diagrams

u,

D) — !

D(, )\ /

commute, Applying coeq. IA(—) we get commuting diagrams in Ab -

v,
X, — —> Y
J
£, / h
i .
Z
The uniqueness of h follows from considering the commutative diagram

h
o T ] T~

D) ——— X;

£
LA ———— Y

Z

where p is the projection to the coequalizer. "Since ph is unique, and UA(p) is

surjective, h is unique.
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Hence we may write >/ = / / X, Thus, an algebraic category is cocomplete.

While we are on the subject of coiimit properties of algebraic categories
we mention the following results, Call a pre-ordered set «@-directed, for a cardinal o,
if every set of elements of cardinality less than « has an upper bound. An a-directed
system in a category is a functor into that category from an w-directed preordered set.
Call an A-model a-generated if it is generated by a set of elements of cardinality less

than a.

Theorem 4, 8. If A is an a-bounded theory, UA preserves colimits over

o-directed systems.

Proof. | Let I be an @-directed preordered set, and T: I ——> Ab a functor,
Let B= li_m> UAT. Ne construct an A-model X with UA(X) = B as follows: since
A is «-bounded it is enough to define the action X(w) for « of arity less than «.
Let egls(A), where S has cardinality less than «, and let [[ba_,ib.]} e €8

be an S-indexed family of elements of B. Remember that these are of the form [b,i]
where i€ I, be T()and [b,i] = [b", i'] if for some i¥ such that i< i" and

it ¢ i® the elements b and b* get taken to the same element in T("). Define

«£[h,,1.] tobe (w"l-;, ] where ¢ is an upper bound of }

‘iﬁ’}c—e 3 and

b _ gets taken to 55 under the image of T on i, < £ . This gives an A-model X,

and the function UAT(i) R UA(X) given by x ————>£x,i] gives a coherent family
u v

of homomorphisms T(i) L .x. ¥ T() X

>'Y 1is any other coherent family of
h )
homomorphisms, define X ———= Y by [x,i]h = XV, Then uih =V and clearly

h isunique. Hence X= lim T. Thus UAmﬂ> T) = h_fll> UA’I‘.

Theorem 4. 9. If A isan w-bounded theory, every A-model is the colimit of its

a-generated submodels.



_.34_

Proof. It is enough to prove this result for free models, since every model is a
quotient of a free model. The result now follows from the remark at the end of § 2
that for an a@-bounded theory, every element of a free model may be represented by

the application of an operation of arity less than « to a family of less than « generators.
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Exercises 4.

Let A be a theory with a 3-ary oper:;tion e satisfying

O(x, x, y)=y =By, x x)
Show that a submodel of an A-model XxX is a congruence on X if and only if it
contains the diagonal submodel, i.e. the image of the homomorphism

Axs Iy

X —> X x X.

I¥ A is an algebraic theory and f is a homomorphism of A-models, show that f is

the coequalizer of its kernel pair if and only if UA(f) is surjective.

An epic map is called regular if it is a coequalizer of some pair of maps. Show that

in algebraic categories, pullbacks cf regular epics are regular epics.

Show that in an algebraic category, pullback along regular epics is an isomorphism

reflecting functor.
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§ 5. Maps of Theories

The notion of a map between theories is one which is new to the
categorical approach. In the classical approach, the theory was given , and
although its quotient theories were in effect studied, the notions of subtheory,
or, in general, maps between theories, were simply not considered. Never-

theless, the concept is a natural one, and leads to some interesting questions.

Defiinition 5.1 If A and B are algebraic theories, a functor f: A —> B

is a map of theories if it preserves coproducts and f(Al) = Bl'

Such a map of theories f: A —> B , induces for each S a function

Q= D) — 2B

and it is clear that these functions determine f uniquely. Furthermore, if A
is «a-bounded, f is determined by the Qs(f) for which the cardinality of S is
less than «. Hence, if A is a bounded theory, there is only a set of maps of
theories from A to B.

In this way we have a category Bth, whose objects are bounded theories, and

whose maps are maps of theories.

Let us look at some examples of maps of theories:

a) (abelian groups) —> (rings)
b) (groups) —> (abelian groups)

c) (Lie-rings) — (rings)

In example a) the addition for abelian groups is taken to the addition for rings.

In b) group multiplication is taken to addition in abelian groups. In c¢) the
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Lie-bracket is taken to the commutator.
I A ——f-—> B is a map of theories so that for each 8, .Qs(f) is an
inclusion map, we call A a subtheory of B, and f the inclusion. If for each S,
0 S(f) is a surjection, we call B a quotient theory of A. Tn example b) above, we

may say that (abelian groups) is a quotient theory of (groups).

For any theory A, the functor jA : 8§ —> A isamap of theories.
Indeed, up to natural isomorphism, it is the only map of theories from S to A.

Thus S is an initial theory. Similarly 1 is a terminal theory.

¥ A —f———> B is a map of theories and Y: BO —> 8 isa B-model, then

the composite

0 f 0 Y

A > B ——>S

b 8
preserves products, and so is an A-model, which we denote by f (V). If ¥ —> Y is
2 homomorphism of B-models, the natural map ¢.f is a homomorphism of A-models,

which we denote by fb(@).

In this way we obtain a functor

which we call the "forgetful functor™ or "pullback™ along f.

It is an immediate consequence of the fact that f(Al) = B1 that the diagram

b b
commutes. Indeed, if we identify 5~ with § we may identify UA with jA .
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The associativity of functorial composition tells us that if we write

A >B—E ¢ =A——§—g———>c
then
b b b
fg) = g
For the examples given above, we have
. b . b s s .
a) (rings) ——> (abelian groups)  : forget the multiplication structure.
. b b . .
b) (abelian groups)  —— (groups) : the inclusion functor.
b
c) (rings)b —> (Lie-rings) : treat a ring as a Lie-ring with commutator for the

Lie~operation,

Note that the unique map of theories A L>_l induces the functor

:ﬂ_—— L. Ab which picks out the terminal object of Ab.

Now we prove an ext ension theorem, which will frequently prove useful.

Theorem 5. 1. Let A be an algebraic theory, let C be a cocomplete category, and

let

T: A - C

be a coproduct preserving functor. Then there is a unique colimit preserving functor

T:a ¢
such that the diagram
I
A - A — Ab
e
T e
// T
R 7
c ¥

commutes.
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Proof. For Xe Ab, define f(X) to be coeq. TD(X), where D is the diagram of

> b

functors D D : A —>A definedin §4. This defines a functor

T:Ab

> C. Next we wish to show that T . IA =T. For this purpose, recall

that a contractible coequalizer diagram is a diagram of the form

= d
‘X:L — Xo g_i—) X

e
<

3

such that the following four identities hold: -

a) dOd = dld
by sd = 1
¢y sd =1
00 Xy
d) SOdl =ds
Lemma 5. 2, With the same notation as above
——do > d
X1 dl XO X

is a coequalizer diagram.
Proof.  Let X £ Y be such that doé’ =d,6 . Let h= s€ . Then
dh = dsf= sod15 = sOdOQ =6
and h is unique with this property because b) implies that d is epic.
Note that because contractible coequalizer diagrams are defined

equationally, they are preserved by functors. Hence, any coequalizer diagram that is

part of a contractible coequalizer diagram is preserved by functors.



_.40_

F .
Let C z-?? D be functors with F left adjoint to U, with front and end

adjunctions v} and £ respectively. Then we have: -

Lemma 5.3. TFor any object S of C,

gy S S sy
) F(S ; JE(S ) ———>
(FO) a )\ FUE F(s) /) ¢ )"\_~/
F(,'F7S [:,‘75

is a contractible coequalizer diagram.

Proof. a) and d) follow from naturality; b) and c) follow from the propertizs of

adjunctions.

Now we continue with the proof of theorem 5.1. We have to show that

E‘J(FA(S)) = T(AS). Ne have a contractible coequalizer diagram

ERUFR(S) .
2, AATA — ER(s)
) < 3 AU E(S) 22 s
651/4) E( ) W AT /’ A4S ¢ )rxrg// 5(5)
SGRS g
. b R b . . . -
in A", Since IA : A ——> A" is full and faithful we have a contractible coequalizer
diagram
(56)5(5') <
D, (55) > D) s 4

R oy m—
LA, —

in A. Applying the functor T, we get the desired result. Since colimits commute
with colimits, T is colimit preserving. Since every A-model is a colimit of free

A-models, T is unique.

b

We call T : A > C, the extension of T: A — C.
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I
Suppose we have a map of theories A > B. Since B —§——> Bb is coproduct
: . IB - b
preserving, so is A > B >B . Let
f
*
Ab —> Bb

be its extension.

Theorem 5. 4. Let A

> B be a map of theories. The functor

is left adjoint to fb . B —A

Proof. Let X bean A-model and Y a B-model. We have the following string of

natural isomorphisms:

HomBb £, (X), V) = Home (coeq. IBfD(X), YY) =

= eq. Hom , (I fD(X), )
B

= eq. Y(EDX)) by Yoneda lemma

~ eq. Hom D(X), Yf)

(I
Ab A

[t

Hom . (coeq. I, D(X), fb(Y))
Ab A

~  Hom b X, fb(Y)).

A

In the above, "eq"™ denotes equalizer of the pair of maps in the diagram denoted by

the symbols which follow it.
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This result is of great importance. It may be regarded as a relativization

of the adjointness of UA and FA. Indeed, if we take the case f= jA : 8§ —>A then,

. . b .
up to natural isomorphism, we have Iy = Uy Gp)e= Fp-

Let us look at f for the examples given above:

a) (abelian groups)b > (rings)b is the tensor algebra functor.

b) (groups)D = (abelian groups)]O is the functor

G

> G/[G, G] .

—> (rings)b is the universal enveloping ring functor.

c) (Lie—rings)b

The uniqueness of adjoints up to natural isomorphism ensures the coherent natural

isomorphisms

g, ~ g, L, .

I A

> B is a map of theories and B is a bounded theory, say «-bounded, we

may write down an explicit formula for { X for any A-model X as follows:

Consider the set

L/ (Hom (B, B) x X(A

_)

where the coproduct ranges over sets of cardinality less than «. On this set consider

the equivalence relation generated by

(B-f(«),§) (B @.5)

B e .
where Bg > By, Ay >AT and fe X(ap), forall 8,ev ,g , U and T.

Denote the equivalence class containing (y,f ) by Y@Ag .
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Proposition 5. 5. The elements of f (X) (BS) are in bijective correspondence with

the equivalence classes V®A§; . The action of ’/3 € B corresponds to the function
V&S > fr s

Ve leave the verification as an exercise to the reader. This description of f_(X)
only makes sense when B 1is bounded, even though f (X) exists when B is unbounded.

Note the similarlity of this construction with that for tensor products of modules.

If A is an algebraic theory, an A-theory is a pair (B,f) where B is

an algebraic theory and A f > B is a map of theories. A map of A-theories

(B, ) ——= (B, ") is simply a map of theories B B such that g.f= 1. For

example, a Z-theory is what one might call a linear theory.
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Exercises 5

Show that a ring homomorphism K —=+ K' induces a map of theories Mat(K) —> Mat(K").

Show that Mat is a functor

b
(Rings) > Bth

and that it is full and faithful,

Let K ——E——> K' be a ring homomorphism. Interpret fb and f, and show that fb
has a right adjoint.
The identification of a monoid with a unary theory gives a functor
..b
(Monoids)  -——— Bth.
Show that it is full and faithful and left adjoint to the functor

). : Bth > (Monoids)b .

1

Let BthO be the full subcategory of bounded theories with no nullary operations. Show

that the inclusion functor Btho <—> Bth has a right adjoint, given by A !/ > A .

Let Aff Bi:h0 be the full subcategory of Bth0 of affine theories. Show that the inclusion

functor Aff Bth0 > Btho has a right adjoint given by A F—— Aff(A).

Show that Conv (ex. 2.1.)is isomorphic to a subtheory of Aff(IR), where R is the

ring of real numbers,
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§ 6. The tripleability of forgetful functors

No discussion of algebraic theories would be complete without mention

of monads (or triples). Indeed, the whole subject may be rephrased in terms of them.

We content ourselves here with a brief outline, since there are adequate texts elsewhere.

Ve refer the reader particularly to chapter VI of Categories for the Working

Mathematician LMacLane 'ﬂ .

A monad (or triple) on a category C is given by a functor
T: C—>C

and natural maps

t« ¢+ T —>T /V/:lc————->T

satisfying the conditions that the following diagrams commute: -

Tp
(Associativity) T3 -— 5 T2
P i
T2 - > T
T T
(Unit) r— 1 2T T
lﬁ /
1 T
i v
T

A map of monads from T = (T, p1,~) to T? = (T, u?%, % is a natural ma
map of monads from T = (T, y,~) to T phy P

g s T

> TF

such that the following diagrams commute: -
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2 £E 2
T —m— T -
/
£
R e T ——— 7
F
Proposition 6,1. Let C :——D be a pair of adjoint functors, with ¥ left adjoint to
G, with unit 1 : 1C —— GF and counit ¢ : FG > 1D. Then (GF, Ge& F, «/ ) is

a monad on C.

I T=(T,r »7)1is a monad on C, a T -algebra is a pair (X,§) where

X is an object of C and

g

is a map such that the diagrams

“
T S8 X s T(X)
i R
Fx L $ . s
< % >
T(X) ——> X X

commute,

A map of T- algebras (X,%’) — (X¥,€7) isgiven by a map X <. Xt in C such

that the diagram

1) —& s 1)
| } .
?l Vg
ol
% —_— Xt

commutes.

Ne obtain a category CI of T-algebras and maps of T-algebras.
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Ne have functors

ol . & > C &,§) —s X
and LT o LT A > (TA), 4 ,)-

cos T . . T . .
Proposition 6. 2, The functor F— is left adjoint to U=, and the adjoint pair

(FI , UI) give rise to the monad T on C.

Ve call a T-algebra which is isomorphic to one of the form FLI—(A) for

some A in C, a free T-algebra. Let CT be the full subcategory of CE of free

T-algebras. It is clear that the adjoint pair

FI>T
C Cc—
—

T
U—
restrict to give an adjoint pair

Fp
~__'.'"—>
C <——UT - c2

which again gives rise to the monad T on C. Notice that every object of CT is

isomorphic to an object in the image of FT. The category G2 (resp. CT ) is called

the Eilenberg-Moore (resp. Kleisli) category of the monad T . There were discovered
in dependently, and both give a converse to proposition 6,1. Every monad arises from
an adjoint pair. They each play a universal role, according to the following proposition:

F
Proposition 6.3. Let C Z—a——> D be a pair of adjoint functors with F left adjoint

to G, inducing the monad T on C. Then there are unique functors

J: C >D , ¢: D >cX

T
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such that the diagrams

>CE

commute.

> CI is the full and faithful embedding

It follows that the composite CT ——-—{—> D —
T

—C =
CT C .

The functor G : D ——= C is called strongly tripleable if the functor @: D z

> C

is an isomorphism of categories.

Proposition 6, 4. If T isa monad on S, then S is an algebraic theory.

T

Proof : Since FT has a right adjoint it preserves coproducts. Every object of ST

is isomorphic to one of the form FT(S) for some S, and hence to (/[ FT(l).
s T

It is easy to see that a map of monads T ——> T' induces a map of theories

_S_T - _S_T' .

Proposition 6.5.  The functor (between illegitimate categories) from monads on S to

algebraic theories, given by T — §T , is an equivalence.
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The inverse equivalence is that which assigns to a theory A the monad
induced by the adjoint pair (FA,UA). Let us call this monad T(A). These results

T(A)

tell us that we may identify S with A, S— with Ab, the inclusion

=TA)

T(A)
§—’£(A) 5=

with

A b

A ——o A

and the adjoint pair (Fz, UE) with (FA,UA). In particular, the forgetful functor UA
is strongly tripleable. The proof given in the text cited above is easily extended to

proving the following relative version:

f
Proposition 6, 6. Let A ——— B be a map of theories. Then the functor

is strongly tripleable.

This tells us that we may regard B-models as A-models with a
_’I_‘f—structure, where Ef is the monad on Ab induced by the adjoint pair (f*,fb).

This alternative way of looking at things can be very convenient. ‘We may prove that

b
every monad on A~ arises in this way (up to isomorphism of monads).

Suppose that T > T7 determines a map of monads T'—> T? on a

category C. We have a functor

1
6’b : S

given by
(X,g) f—> (X,SOX)
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If C has coequalizers, this functor has a left adjoint

=T
€, s It

given by the coequalizer diagram

, 3 .
TT(x) ===3 T (x) =7 6055
i TE

f b
If A —> B is a map of theories, the identification of A™ with §I(A) identifies
b
T(f)b with £ and T(f), with f,. It is useful to have the two pictures - theories
and monads. Each has its own advantages. ‘We could have described the correspondence

between the two pictures with much greater pedantry, but for simplicity we shall simply

identify Ab with §I(A) (and §'£ with (§T)b for any arbitrary monad T on S).

If o is a cardinal, we say that a monad T on § is a-bounded if for
any set S and element x € T(S) there is a set V of cardinality less than « anda
function V ——f-——> S such that x is in the image of T(f). With this definition, a

menad is a-bounded if and only if its associated algebraic theory is a-bounded.
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§ 7. Semantics

We have seen how a theory A determines a functor

f :
and a map of theories A ——> B determines a commutative diagram

b
Ab — f ————Bb

A4

s

This gives us a functor, which we call semantics, from the illegitmate category of
theories to the illegitimate category of categories over S.

The functor UA determines the theory A, because if S is a set

Nat(TSTUA, UA)zNat(FA, F, Jb_l )’xfzs(A).

b
Similarly f determines f. Composition with fb gives a function

TT — T
Nat(ITU, U, ) —> Nat(&/‘/ Up-Up)

which corresponds to Qs(f).

Lo > § tractable if for any set S, the clags of

We call a functor C
S we

natural maps from s?‘TU to U isa set. For any tractable functor C ——
define an algebraic theory
Str(U)

by taking the dual of the full subcategory of §9 (an illegitimate category) given by the
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functors ':/—k , for S a set. The tractability of U gives us that Str(U)is a

legitimate category. It is an algebraic theory with

515 (Str(U)) = Nat@d7 U, U).
S

F
It —>C is a commutative diagran, where U and U’

\/

are tractable, we obtain a map of theories
Str(F) : Str(U) -—> Str(U")
by taking
0 Str(F)) Nat(IjU,U) — Nat(/:/U’, U
to be the function defined by composing with F.

In this way we obtain a functor, called algebraic structure, from the
illegitimate category of tractable functors into S to the illegitimate category of

algebraic theories,

Since Str(UA)'-“-i A, and Str(fb) ~ f, algebraic structure is left inverse
to semantics. These functors are also adjoint, The other adjunction is given by a

functor

> Str(U)

\ o

which takes an object X in € (othe Str(U)-model whose underlying set is U(X)
and for which the action of a map « € Str(U) is given by evaluatien of the natural map

a at X.
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b
Corollary 7.1, Let A and B be algebraic theories and let F : Bb —2> A" bea

functor such that

————> A

\/

Then there is a unique map of theories A ——f—-> B such that F = fb.

commutes,

Proof, Take f= Str(F).

Suppose that C 1is a category with coproducts. Then for any Xe C,

the functor

is tractable, because

1\4at(}IU U) ~ Hom , (X, // X).
SIS

Str(U) is clearly isomorphic to the full subcategory of C consisting of all coproducts

of X, WNe obtain a diagram
(’
: {U) LSﬂ'(U)
/ 6
—_— S/?(u)

which commutes, where i is full and faithful.

Suppose that C has finite limits. We call an object X in C a

regular projective generator if it satisfies the following condition : for any map f

in C, f is a coequalizer of some pair of maps if and only if HomC(X, f) is a surjective

function.
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In [La\were, 1] Lawvere proves in the finitary case that

£ c > str(U)°

is full, faithful and has a left adjoint if X is a regular projective generator. Further,

¢ is an equivalence if, in addition, in C equivalence relations are kernel pairs.

I A is an algebraic theory, the object FA(I) is a regular projective
generator in Ab. In general it is not the only one, and the others will determine

b b
equivalences A =~ B~ for some other algebraic theories B. Wwhen this happens we

say that A and B are Morita equivalent.

¥e refer the reader to [Lawvere, 2] for a particularly interesting

discussion of algebraic theories Str(U) for certain functors U.
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Exercises 7.

Let U be the forgetful functor from fields and field extensions to S. Show that Str(U)

contains (commutative rings) and a unary operation £ satisfying:

eM=1, OEy)=0(x),09()

x2,€(x)=x , Bx)==x

Let A be atheory, and X an A-model. Let (X, Ab) be the category whose objects

. b : .
are maps X >Y in A~ and whose maps are commutative diagrams

X
/ /
y—7

Show that with X —> Y} ——> UA(Y) as forgetful functor, the category (X, Ab) is

algebraic.

. cse O : "
If the algebraic theory of exercise 2 above is denoted by AX’ show that “OXZ‘<AX) v UA(X).

Nith the notation of § 3 show that A =~ A
i 8 W FAUJ)

A-model via the inclusion functor i : Ab—é- A b for i: A —>A.

where FA(;I.S) is interpreted as an

Let J be the inclusion functor of the category of finite sets and functors into 5. Show

that Nat(/7J, J) is in bijective correspondence with the set of ultrafilters on S.
<
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§8. Bimodels

We have seen that if B is an algebraic theory, the category Bb of
B-models is cocomplete. If A is another algebraic theory, it makes sense
to talk of A-models in (Bb)o, or, to put it another way, of co-A-models in
Bb. Such a gadget we call an (A, B)-bimodel.
More formally, an (A, B)-bimodel is a coproduct preserving functor
A — Bb. A homomorphism of (A, B)~bimodels is to be a natural map
between such functors. We shall denote the category of (A, B)-bimodels
and homomorphisms of (A,B)-bimodels by [A,B].

X

A Bb is an (A, B)-bimodel, we call X(Al) the underlying B-model

of X, and we have an evident forgetful functor

[A,B] — B X — XA

UEA’ B]: 1).

!

We may identify X(A_) with JS_ X(Al) and we shall do this from hereon

g
without comment. If w eQS(A) is an S-ary operation of A, we have a

homomorphism of B-models

11
Xw) :X(Al)—> S—X(Al)

which we call the coaction of .o on X. Clearly, X is determined by the
underlying B-model X(Al) and by the coactions X(.w), so that U[A, B] isa
faithful functor,

One of the most popular examples of the concept of bimodels is afforded by
Hopt algebras. If B = (commutative rings) then coproduet in Bb is given
by Ox, so that a (Gp,B)-bimodel is given by a commutative ring R,

together with Gp-costructure, i.e. a comultiplication R —> R®_ R,

z
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a co-unit R > Z, a coinverse R ~——> R and so on, satisfying appropriate

axioms.,

Another example, of fundamental importance, is given by (A,B)-bimodels

when A and B are annular theories. In that case, an (A, B)-bimodel is simply
an (A, B)-bimodule, i.e. an abelian group which has a left B-module and right
A-module structure, with the left and right actions commuting with each other.

An (A, B)-bimodule homomorphism is simply a homomorphism of bimodules.

Let X bean (A,B)-bimodel and Y be a B-model. Consider the composite

functor

Hom_b (-, Y)
AO X (Bb)O B s .

Both factors preserve products, so the composite is an A-model, which we
denote by

Hom (X, Y) .

This construction is clearly functorial, so we have a functor

Hom_(-,-) [A,B]Ox Bb——>Ab.

Note that UA(Hom (X,Y)) = Hom (X),(Y), i.e. the underlying set

B sP [A.H]

of the A-model HomB(X, Y) is the set of homomorphisms of B-models from the
underlying B-model of X to Y.
We call a functor Bbﬁ Ab naturally isomorphic to one of the form

HomB(X,—). for some (A,B)-bimodel X, a representable functor. .

Proposition 8.1 An (A, B)-bimodel X is determined by the representable
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functor HomB(X,—) uniquely up to isomorphism., The (A,B)-bimodels

X for which T,
[A,B]
b

of the functor Home (Y,-) to functors T Bbﬁ A" such that UA.T =

(X) =Y are in bijective correspondence with the liftings

Hom  (Y,-).
Bb

Proof, This is a straight application of the Yoneda lemma. If U['A B](X) =Y,
2

then HomB(X,—) plays the role of T, uniquely since UA is faithful.

Conversely, given the lifting T, for each map AS—3~—> A . of A, we have an

W

action of «

T 1 Hom p(¥s=) —> ] [Hom | (¥,-)
w B S B
and so a map ls—l Y — % Y, which defines an A-costructure on Y,

giving us an (A, B)-bimodel with Y for underlying B-model.

This proposition allows us to determine a bimodel by means of the
representable functor associated to it. For example, a cogroup structure
on Z[t,t_]] is determined by the representable functor from (commutative
. b b . . .
rings) to (groups) given by "invertible elements of (-)".
b
If X: A——> B isan (A,B)-bimodel, then by theorem 5.1, there exists

a unique functor

}\(} : Ab—————> Bb

which preserves colimits, such that X = X1 x We denote this functor by

X@A(—) H A]D--~——-——>~Bb .

According to §5, if Z isan A-model, then
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X&AZ = coeq X D(Z) .

It follows that we have a functor

N2

1®,¢) : [A,B] x LI

Theorem 8.2  For any (A,B)-bimodel X, the functor X @A(—) is left

adjoint to HomB(X, Yo

Proofs Let Y bea B-model, Z an A~-model., We have the following

sequence of natural bijections:

Home (X @A Z,Y) =

Hom (coeq XD(Z),Y) =
Bb

©

eq. Hom | (XD(Z),Y)
&P

eq. HomAb(IA. D(Z), HomB(X 4] -

HomAb (coeq, IA D(Z), HomB(x) 7)) >~

HomAb (Z, HomB(X,Y)).

Suppose now that A,B,C are algebraic theories, that L is an (A, B)-bimodel

and M isa (B,C)-bimodel, Consider the commutative diagram

B
T L 13 j/ ~
A
. 3 5

—"—H
L&, (~) Mg-) C

>
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Beacuse M @B(-) has a right adjoint it preserves coproducts, so the
composite M @B(—)., L isan (A,C)-bimodel, which we naturally denote by

M @B L. Inspection of the diagram shows that

M @BL) ®A(—) Y M ®B(L @A(-)) .
From the uniqueness of adjoints it follows that

HomC(M@ L,y «~ HomB(L,HomC(M,—))

B

Since composition of functors is associative,the bifunctor
)85 () +[B,C] x [A,B] — [A,C]

is coherently associative. The (A,A)-bimodel

IA: A—>Ab

acts like a 2-sided unit for ®A. Its;underlying A-model is FA(l). When
A is annular, IA is simply the ring A itself considered as a bimodule of
itself. It is common practice to abuse notation by using the same symbol for

A and I A and we shall sometimes do this, so that the notation X© A Ax X =

B ®B X makes sense if X is an (A, B)-bimodel.

Proposition 8,3 If X,X' are (A,B)-bimodels, every natural map
X ®A(—) L—> X' ®A(—) is of the form §®A(—) for a unique homomorphism

of (A, B)-bimodels X ~—-{——> X'
Proof. Define ;’ to be )\ .IA.

Corollary 8.4, Every natural map HomB(X',-) —_ HomB(X, -) is of the form

t

HomB(j’,-) for a unique homomorphism of (A, B)-bimodels X -1 X',
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Theorem 8.5 A functor G : Ab — Bb is of the form X QoA( — ) for

some (A,B)-bimodel X if and only if it has a right adjoint.

Proof: One way round is clear, because HomB(X, -) is right adjoint to
X ®A( - ). For the other way, suppose that G has a right adjoint. Then it
preserves coproducts, so

1
A——>Ab—c'—>}3b

is an (A,B)-bimodel X. By the uniqueness of the lifting theorem 5.1, it follows

that G~ X@,(-).

Corollary 8.6 A functor F : Bb —_— Ab is representable if and only if it has

a left adjoint.

It A L) B is a map of algebraic theories, then

I
AfBBBb

is an (A,B)-bimodel which we denote by Bf. Since the diagram
B
B

Bf@A(—) = f

A

I

f
—
A
f

Ab *

_—

commutes, it follows that

*

I
=2

HomB(Bf, -)

Since a functor Bb —_— Ab is of the form fb for some map of theories f if and

- only if the diagram
& 4
B ———A
o /o
(3
S

commutes, it follows
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that an (A,B)-bimodel X is of the form Bf if and only if U[A B] Xy~ FB(l).

It is convenient to think of (A,B)-bimodels as generalized maps from A to B.
Maps of theories in the strict sense are those which satisfy the condition alone.

Composition of maps is given by using & .

Suppose that ?XV} is a diagran of (A,B)-bimodels. We may define an

(A,B)-bimodel lim X‘) by the formulae

-
lim X (@) = lim (X (@) ae A
M v

because colimits commute with coproducts. We note the following formulae

lim X & ,(—) = lim X, ®,(—)

—> —>
v v

Hom ( lim X, ,—) ¥ lim Hom (X, —).

—>
v s
In particular, for any set S and theory A, we have the (A,A)-bimodel 11 I

S A
which we call the free bimodel on the set S. It representsthe functor m —):

S
Ab — Ab. A theorem of Kan, asserts that every (Gp,Gp)-bimodel is free.
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Exercises 8

1. If A,B are unary (resp. annular) theories, show that [A,B} with

forgetful functor

U u
[a,B] (A,B], b B .5

is algebraic, and is the category of models of a unary (resp. annular) theory.

2. I R[[tl{ denotes the ring of power series in the indeterminate t
over the ring R, show that the functor R —> R{[ tI[ is representable. Is

the functor R —> R[t] representable?

3. Let A be the theory of commutative %p—algebras, where p isa
prime number. Show that the functor which takes a Zp-algebra to the group

of invertible elements of order p is representable.

4. If A and B are theories, show that [ A,B] has colimits, given by

(hm X, ) (@ = lm (X, (@) .
—

—
v v
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§9. Algebras over theories

Let A be an algebraic theory. By analogy with the annular case, we define

an A-algebra to be a triple (X,m,e) where X is an (A, A)-bimodel, and

m:X@JAX‘%X e=IA——>X

are homomorphisms of (A, A)-bimodels making the diagrams

rm 1y
Xe Xe, X 222, Xo, x
1)(@4»4 j/ l»’"r
X& X - — X
8L 1,®, ¢
I/‘@AX MX@%X XA A‘Z
A
A ™~ —
X

commute.

A homomorphism of A-algebras (X, m,e) —> (X',m',e") is given by a

homomorphism of (A, A)-bimodules

f: X—> X'
such that the diagrams
fo, f : T
XX —" Xeo x"’ “a
4
l ‘1/ / e e
m w
P
14 .
x —F X— i x

commute.
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In this way we obtain a category-A-alg of A-algebras and homomorphisms of
A-algebras. It should be clear from proposition 8.3 that an A-algebra

structure on an (A, A)-bimodel X is simply the same thing as a monad
structure on X @A( — ) and that a homomorphism of A-algebras corresponds to

a map of monads.

We have a forgetful functor

A-alg —> [A,A]

which we shall not bother to name. We shall also adopt the convention of

abbreviating the symbol (X,m,e) to simply X.

¥ X is an A-algebra , an X-module is to be an algebra of the associated monad
Xz A( — }. That is to say, an X-module is an A-model M together with a map,
the structure map,

x@AM—”—>M

satisfying the usual axioms. We could, of course, equally well describe an

X-module as a coalgebra of the comonad Hom

A(X, —), with costructure map

~

M-E— Hom, (X,M)

adjoint to the structure map. A homomorphism of X-modules is a map of

X @A(— y-algebras, or, equivalently, a map of HomA(X, - )-coalgebras.

The inspiration for our terminology is taken, as usual, from the annular case.
If R is aring, let us stretch the usual terminology by defining an R-algebra to

be an (R,R)-bimodule S together with maps of bimodules

R—e—>s R

m
S@RS—>S
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satisfying the usual axioms. Then S becomes a ring, and e becomes a ring
homomorphism. In fact all ring homomorphism with domain R are obtained

in this way.

Correspondingly, we shall construct a full and faithful functor from A-alg to

the category of A-theories. However, for theories all does not work so smoothly
as for rings, because not every A-theory arises from an A-algebra. We shall
show that an A-theory A -f—> B arises from an A-algebra if and only if

fb : Bb — A]D has a right adjoint as well as a left adjoint.

We shall anticipate the construction of the functor from A-algebras to A-theories

by a few deliberate abuses of notation. First, if
X = (X,m,e)

is an A-algebra, we shall denote by Xb the category of X-modules and
homomorphism of X-modules , and by

eb: Xb——>Ab

the forgetful functor (M,u) —> M. This functor has a left adjoint
b
A :
e, —»Xb N—>(X®AN,m®A1N)

which takes an A-model N to the free X@A(— )-algebra on N, and also a

right adjoint
b ~
e : AT Xb : N-— (HomA(X,N), mN)

which takes an A-model N to the cofree Hom A(X, —)-coalgebra on N. Here

?

m is the comultiplication of the comonad Hom A(X , —) adjoint to m.

Suppose that XI L—) X2 is a map of A-algebras. If (M,u) is an Xz—module,
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then (M,u. f@AlM) is an Xlamodule, with stnicture map

f@AlM
X, @5 M ———>X2®AM“—>M

so we have a functor, pullback along f,
fb : Xb —_— Xb

2 1

It is clear that the diagram

e’ /ef (9.1)
14

A commutes.

The functor fb has a left adjoint
f, Xb ———-——>Xb

* 107 2

given as follows: let (M,u) be an Xl—module; form the coequalizer in Ab of

the maps
. Ie® M
x
N S Y X® M
)()\@A X,®A Moo 2 A
“\ /7
1. ® f@i \ % ® 1
] el =y A)( ~ 2 A TM
x 2 A

With the X2 & A( - )-algebra structure induced by m, ®A1M this coequalize -

is to be f,(M,u). Modulo the usual abises of language, we should call this

X,® XlM .
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The functor fb : X ; —> Xf also has a right adjoint

b b
f+: Xl ———)Xz

given as follows: let (M,ﬁ) be a HomA(X1 - )-coalgebra; form the equalizer
in Ab of the maps

HMA(iy\,F)

va/;x ()(L) /‘7) /"/cmﬁ (X, l/’/évv‘/‘\ ()",/ ,LU)

7
iy Fern ‘1,

HLMA(XL)/-/WTA(/(MM)) A e (hdp )

With the HomA(X,), - )-coalgebra structure induced from (I‘\I'IXZ)M this equalizer

is to be f+ (M,u), or in sloppy, but more suggestive language, HomX (XZ,M).
1

Now we construct a functor from A-Alg to A-theories. ¥ X is an A-algebra,

let us temporarily denote by X the algebraic structure of
b U
Xb I Ab —A—> S

b U
In view of proposition 6.6., Xb is an algebraic category with Xb _e_} Ab——> 8

as forgetful functor, so we may write )_i'b = Xb and U}—( = UA. eb. Further, we

have a map of theories
e —
A—"5X
-b b
such that e” =e". From (9.1) we deduce that for every map of A-algebras

f
X ——> X  , we have a commuting diagram of theories

1 2
A
4 / \zx
%1 .%
1 2
b Db .
where £ =f". In this way, we get a functor

(X,m,e) —> (A —e—-——>—f), f—>f
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from Alg(A) to the category of A-theories. We may ask, when is an A-theory
in the essential image of this functor, i.e. when is an A-theory A N B
isomorphic to one arising from an A-algebra ? Clearly, a necessary condition
is that eb should have a right adjoint. We will show that this condition is alsc

sufficient.

Theorem 9.2 A necessary and sufficient condition that a map of theories

f
A ——> B should arise from an A-algebra is that fb should have a right adjoint.

Proof. The necessity is clear. For sufficiency, suppose fb has a right
adjoint f+. Then the composite

AP * L8P £ AP

has a right adjoint, namely the composite

b f+ bfb b

A —>B —> A .

So, by theorem 8.5., the composite fbf* is of the form X ®A( -) for a
unique (A,A)-bimodel X. The monad structure of fbf* makes X into an A-

algebra. Proposition 6.6 ensures that Bb = Xb, and B=X .

This suggests that we should call a map of theories f essential if fb has a

right adjoint as well as a left adjoint.

Theorem 9.3 The functor X /—> X is an equivalence between the category

of A-algebras and the category of theories essential over A.

Proof. All that remains to be shown is that thé functor X —> X is full.

Suppose that Xl’XZ are A-algebras and that
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/O
X, — §2
is a commutative diagram of theories. Let
b
u:l p———>g g,

X1
be the front adjunction of the adjoint pair (8r gb). Then

b
e ue

1 U X @ L(0) > X, @

Al)
is a map of monads, and so arises from a unique map of A-algebras

h : Xl———-%XZ.

In order to show that g =h, we must show that gb = hb. ¥ (M,u) is an

X 5~ module, then

b b b
DO(Mop) = (mop.h @1y ) = (Myp.eue ) =g (Mu),

where, for the last equality, we have freely used the equivalence of A-models

with UAFA -algebras.

In view of this result we shall drop the bar and denote the A-theory X simply

by X, as is the fashion in the annular case.

If X is an A-algebra, let us look a little more closely at the structure of
X-models. Let us describe an X-model by its HomA(X, - )-coalgebra structure:

so we are given an A-model M and a homomorphism of A-models

~

M —F— Hom (X, MY

satisfying certain conditions. Consider the function

N3]
A
U, (M) ——— U, (Hom (X, M)) = Hom b(U“,,] X), M).
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Given an element x¢ UA' U (X) and an element ye UA(M), we may

(A, A]
evaluate UA(UA(ﬁ) (y)) on x to get an element x.y in UA(M). In this

way, the elements x of the underlying set of X act on the underlying sets of

X-models - they giveunary operations of the theory X, in fact.

We can see this from the identity

.Q1<X) T U, UEA,A](X).

On the left hand side X is interpreted as a theory, on the right hand side as an

A-algebra.

Suppose now that w < @] g(A) and that M has an X-model structure. Using

the identity

U, (Hom, (X, M)) = HomAb(U[A,A] X), M)

and U, (Hom, (X(A.), M) = Hom,\ b |_s_|U AA (X), M) =
= Sl HOmAb (U[A,A] (xX), M,
we obtain a commutative diagram
T U (M vr '
s A ) HoﬂA‘” ( L_g'/ UEA,A](X) p M)
M v Hawa o (xte, 1)
U, (m ~ > Hem (U (x) M
A ) : A [A, 47 / )
%ot (2] /.

= U, 1) 4—//

where 'x' denotes "evaluate at x" and x.w. denotes the image of x under

-
.
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U A(X (w)). The commutativity of the diagram gives us that if z is an S-indexed

family of elements of U A(M) then
X.(W.2) = (X.w).2

This may be interpreted as a sort of distributivity law as will be seen in a moment.
The theory X may be thought of as an extension of A by unary operations (the
elements of the underlying set of X) some of which are identified withunary
operations of A (via the homomorphism of monoids Ql(A) e 'Ql (X) induced

by A £ sx ) which obey the distributivity law just mentioned.

An instructive example is the following: let A be the theory of commutative
rings, and let X be the theory of commutative rings with derivation. There is
an obvious map of theories A —> X, which is essential. We obtain X by
adjoining a unary operation d satisfying the distributivity laws d.0=d.1=0,
dix+y) = d.x+d.y

dx.y) = dx.y + x.dy.

Another example of a theory essential over (commutative rings) is the theory of

special A-rings. An example of a distributivity law is the Cartan formula

Mty = 2 APy, a9y,
pta=n
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Exercises 9 -

1. Show that annular theories are precisely those essential over Z and

that unary theories are precisely those essential over S.

2. In the example of the essential map of theories (comm.rings) —>
(comm. rings with derivation) describe in detail the corresponding (comm. rings)-

algebra.

3. Show that the forgetful functor

A-Alg ——> [A,A]

has a left adjoint, and construct it, proceeding by analogy with the notion of

tensor algebra.

4. Show that the unique map of theories A —> 1 is essential if and only if

A has precisely one nullary operation.

5. Show that A-Alg has pushouts.
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§10. Commutative theories

Commutative rings have many nice properties; for example, if R is a
commutative ring and M and N are R-modules, the set HomR(M,N) has

a natural R-module structure; also we may define the tensor product M ®RN
which is agaijn an R-module. We shall generalize the notion of commutativity
to theories, and we shall see that there are results which generalize these

mentioned above.

In 81 we defined the concept of commutation for two operations. We repeat the

definition here: -

Definjtion 10.1  Let A be an algebraic theory, S and T sets, and let @ e QS(A)
and B ¢ QT(A). We say that o and B commute if for any § x T-indexed family

{-ch% of elements of U, (X), for any A-model X,

o B x = BLof_xr_

=T <

. el o . S xT
Of course, we could rewrite this definition is an element free way using é‘ g

(7)
instead of x__'s. In informal language, we may say that o and B commute
if for any S x T-matrix of elements the following two processes give the same
result: -

i) apply « to the rows to obtaina 1 x T column. Then apply

8 to this.

ii) apply B to the columns to getan S £ 1 row. Then apply «

to this.
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The following points should be noted:
1) If 8 is a nullary operation, then « commutes with g if and only if

& B _ B
A Ag Ay A = A —A

i.e. if a@B, ..., B)=8-

2) Two nullary operations commute if and only if they are equal.
3) A unary operation always commutes with itself.
4) An S-ary operation does not necessarily commute with itself unless

the cardinality of S is less than 2. For example, if « is a binary

operation, it commutes with itself if and only if it satisfies the law

a(ox (x = a(ax ), ax

11°%12) @ &gy Xoo)) 117 %21 127%92))"

This is the so called "entropic law"

The relation "o commutes with 8" sets up a polarity on subsets of operations of

a theory. We extend this to maps of a theory by saying that two maps

a B8
Ag Ag ’ Ap A

S T
of a theory A commute if 5: «a commutes with gf B forall o ¢ S and
Te T. ¥ H is any collection of maps of A, we define the commutant Hc of
H by

H = foze A | @ commutes with g for all g « H}

Theorem 10.2 For any subclass H of maps of A, K isa subtheory of A.
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The proof of 10. 2 is trivial and we omit it. As with all polarities we have

c . (4
H ¢ H, => Hy< H

ce C CcceC
Hc H .

We denote AS by Z(A) and call it the centre of A. If A =Z(A) we say that A
is a commutative theory. These definitions agree with the conventional ones in

the unary and annular cases.

Lemma 10.3 Let As N AT be a map in A. Then « belongs to the centre

of A if and only if for every A-model X, the action

X(a) X(AT)——————>X(AS)

is the underlying function of a homomorphism TMx—T1X
T S

The proof is an immediate corollary of the discussion in 81 about homomorphisms

being functions which commute with operations.

We say that a category C is enriched over a theory B if Hom  : c« ¢ — 8

C
factors through UB : B]O —> 8.

Theorem 10.4  Z(A) is the largest subtheory B of A such that A]D is

enriched over B.

Proof. First we show that Ab is enriched over Z(A), i.e. that HomAb factors

through UZ(A)'

Let w¢ QS(A) and let
{fo__ ;X —> Y}

oe S

be an S-indexed family of homomorphisms.
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Let

x Vo Tix =, Ty X0y

S 5

¥ w e Z(A) this is a homomorphism, and in this way HomAb(X,Y) carries a
Z (A)-model structure which we denote by HomA(X,Y). It is clearly natural in

X and Y, and Hom, gives the required enrichment. Conversely, if AP is

A
enriched over B & A, then by lemma 10.3, B < Z(A).

Corollary 10.5 If A is a commutative theory, there is a functor

b° b b
HomA:A X AT ——> A

such that UA' HomA = HomAb

Suppose that M and N are A-models and that we () S(Z(A)). The isomorphism

Hom , p( |S_|M,N) ~ g HomAb(M,N) ¥ Hom, b(M, ? N}

together with the action Hom A(M,N) (w) give us a'natural map
- M, -
HomA( %M, )y ——> HomA( s =)

which, by the Yonede lemma, must arise from a homomorphism

which we call the co-action of w on M. In this way, every A-model has a natural
co-Z(A)-model structure in Ab, i.e. a (Z(A),A)-bimodel structure. We obtain

a functor

FLBN [Z(A),A]
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which splits the forgetful functor [ Z(A)JAK —_— Ab, ahd so is full and faithful.

From the functor

b

® : [z@y,a] x ZA)P — A

Z(A)

we get a functor

AP za® 5 AP

which we also denote by @, When A is commutative we get a functor

Z(A)
€4 : Ab x Ab —_— Ab.
A
In this case, the adjointness of @A and HomA can be enriched to a natural
isomorphism
HomA(M ®AN, Ly ~ HomA(N, HomA(M, LY.

Let us consider a concrete elementwise construction for M@& AN . Let F be the
free A-model generated by symbols (fﬁ,ﬁ) for mc UA(M), ne¢ UA(N). Let /7

be the congruence on F generated by the elements

(W m_,n), wiim, ,n))

((m, w'n_), w(m,n.))

for we QS(A), where {m.] , fr{_} are S-indexed families of elements of
U, (M), U,(N) and m ¢ U, (M). Welet m® n denote the image of (m, n) in
F/rt. This construction clearly gives the right universal property and closely
parallels the construction of tensor product of modules. Its advantage to us is

to demonstrate the following: -

Proposition 10.6 ¥ A is a commutative theory, there is a coherent natural

isomerphism

t o M®AN—>N®AM:m® n—> Mm@ n.
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. . . b . .
Thus, if A is commutative, A™ is a closed symmetric menoidal category.
Exercises 10

Show that the centre of (Groups) is the theory of pointed sets.

Let M and N be models of an affine commutative theory. Show that M« N

is a quotient of M ® AN.

Let A be a commutative theory and let X be an A-algebra, which as an
(A,A)-bimodel is in the image of Ab —> [A A] . Call X commutative if the

diagram

t
X@AX—————>X®AX
V‘/\\ /"
¢
X

Show that X is commutative as a theory if and only if X is commutative as an

commutes.

A-algebra.

Formulate conditions on a2 monad on S in order that its associated theory should

be commutative.

For what theories is the category of models Cartesian closed (i.e. for what A

does the functor Xx (- ): Ab —> Ab have a right adjoint, for every Xe Ab) ?
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§11. Free Theories

Theories are usually described, in practice, in terms of certain generating
operations and laws between them. It is clear that an algebraic theory is
itself a sort of algebraic gadget, but a many-sorted one. Instead of one
forgetful tunctor we have a whole collection of functors ;18 , one for each
cardinality. As has been already pointed out, theories and maps of theories

do not form a legitimate category, The category Bath of a-bounded theories

ard maps between them does, and so indeed does their direct limit

Bth = lim B th
i

the category of bounded theories,

Let Carda denote the category of families of sets and functions indexed by the
cardinals less than «. This is a legitimate category, If o ¢ B we have a

full and faithful functor Carda—-> Card,, which inserts an object of the former

B8

in the latter category by assigning to all the indices greater than or equal to «

the empty set. Let

Card = lim Card .,
o “

This is the category of cardinal indexed sets which are eventually empty. For
each regular o, we define

(o),
)7 Bath — Carda

by A H{QS(A)} where S ranges over cardinals less than «. In this
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chapter we wish to show that ‘Q(a) has a left adjoint

(@)

F : Card —> B th,
o o

If o < B, the diagram of functors

Card ————= Card
@ ®)

Bath —~———— B th

B

will commute, so that we may pass to the limit and define

F = lim F(a): Card —— Bth.

It is theories isomorphic to those in the image of F that we shall call free,
Now we turn to the construction of free theories.

Let o bea rexc;rular cardinal, fixed for the rest of this section. Although

the term "tree"™ has various more general interpretations, for us it will mean

the followings

Definition A tree is a partially ordered set P satisfying the following
conditions:

(i) P has a unique minimal element (the root),

(ii) the set m(P) of maximal elements (the tips) has cardinality less than «,
(iii) for all x e P, the subset {y/y < x} is linearly ordered by the induced

ordering from P.

In pictures:

Q’\\‘ 73

rool
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For example, the following are trees: -

For any element x of a tree P, we denote by =—(x) the set of minimal
elements in f‘y ePlx <y, x# yF . Wecall & (x) the branching set of
X 3 it consists of all the points lying immediately above x. Note that x is

tip if and only if o (x) =/¢ R

A map between two trees is to be a monotone functior, Thus we have a

category of trees, and we may talk of trees being isomorphic, For example,

s

are isomorphic,

If P and Q aretrees, and x is atip of P, we can construct another tree
P k’x Q , which we shall call the tree obtained by attaching Q to P at x.
As a set, Pux Q is obtained by forming the disjoint union of P and Q and

then identifying x with the root of Q.
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The order relation on P - % Q is uniquely determined by requiring that the obvious

inclusions

P""‘?P\XQ QﬂPUXQ
shall be monotone,

We may, of course, attach more than one tree at a time., So if P is a tree,

5' s . . .
and Qx} xem(P) is a family of trees indexed by the tips of P, we may form

the tree

obtained by attaching QX to x, for eachtip x of P. Notice that we need «
to be a regular cardinal in order to ensure that the resulting partially ordered

set is still a tree. Note also that we have a bijection

m@y T m@Po{Q}

xem(P) X

).

xem(P)

P
f;(fzc{z

Now we define an important subclass of trees by an inductive method. A tree

is of type 1 if every element is either a tip or a root. For example,

L N
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are of type 1. Note that trees isomorphic to trees of type 1 are themselves
of type 1,

For any ordinal B, a tree is of type g if it can be obtained by attaching trees
of type v, for y <, toatree of type 1, and if 8 is minimal with this
property.

Thus

i.’f’
N\

are of type 2, while

'\‘\. T
AV

is of type ¢, because it is obtained by attaching trees of finite type to a tree

of type 1 (with a countable number of tips).

Again, note that a tree isomorphic to one of type S is of type 8. We call

a tree regular if it is of type £ for some ordinal g.

An infinite linearly ordered chain

[P
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is not regular (if it were, suppose it was of type B ; remove the bottom link,

and we must get a tree of type less than 8, a contradiction).

Proposition 11.1 The branching set of any element of a regular tree has

cardinality less than «.

Proof, We use induction on type, It is clearly true for trees of type 1.
Suppose it is true for all trees of type v for all y <g. Thenitis true for
a tree of type B because every element of such a tree either belongs to a
subtree of type vy for y < B, or is the root, in which case it belongs to a

subtree of type 1.

This principle of expressing any regular tree as obtained from a tree of type 1
by sticking on trees of lower type is fundamental. In somc sense of thewerd,
regularity is a condition on trees which uniformly bounds the height of the tree,

but not its breadth.

Theorem 11.2 Trees obtained by attaching regular trees to the tips of a regular

tree are regular.

Proof: Let P be a tree of type B, and let {'Qiz be a family of trees

iem(p)

indexed by the set of tips of P, where L'\fi is of type a"i. We must show that

Pu i@

iem(p) is regular. We do this by transfinite induction on . Let
i iem

o be the least ordinal greater than the ordinals & i iem®P). If =1

then Pv & .}

if tem(p) has type & . Now suppose the theorem proved for all

B less than [30. If P has type BO’ then it is obtained by attaching trees of
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type B for B < /30 to a tree of type 1. Hence Pu i.Qi;iem(P) is obtained by

attaching to a tree of type 1 trees which are regular by the inductive hypothesis.,

In pictures

RACR

Basically, what we have used is the associativity of the attaching process.

Now we are back to case S8 =1, and the induction is complete,

Suppose that X, is an object of Carda. The basic idea of the construction

(a)(X*), the free theory on X, is to represent the operations of the theory

of F
by trees, with nodes labelled by elements of X,. There is a natural way in

which we can think of an operation as a tree; imagine that we wish to evaluate

an operation w on an s-indexed family of elements erd’ir S * where of course

w has a--*fj S. Represent w by a tree with tips in bijective correspondence
with S, and imagine x_  stuck onthe <« -thtip (in the charming nomenclature

d R. Vogt, the x 's are cherries, so we have a cherry tree), then "passing

down the tree" we come to w’ X, at the root

It is clear that composition of operations corresponds precisely to the notion

of attaching trees,
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If P is a regular tree, an X_-labelling of arity S on P is an assignment

¢ of a value of X(r to each element x of P -5, where S is a subset

)
of m(P), whose elements we call the free tips of (P,¢). In virtue of
proposition 11, 1 this makes sense,

We say that two X -labelled regular trees of arity S, (P,¢)and (P',¢') are

isomorphic if there exists an isomorphism
f: P—>P'

such that ¢'(f(x)) = ¢ (x) for all x ¢ P, which identifies the corresponding

sets of free tips.

Now we may describe how to attach labelled regular trees to each other. Suppose
that (P,¢) is an X, -labelled regular tree of arity S, and that for each i€ 5,

(Qi,'%i) is an X -labelled regular tree of arity Vi' Then we define an X -
|

. |
labelled regular tree of arity s Vi
= £y v ¥ ¥y
(R,2) = @) v {@uF ) o
=P U = 8y =€
by R=P v {Q]J, o, where ¢1Q =7, and 4i(@P-5=C.

Note that attaching labelled trees preserves the reation of of isomorphism.

(@)

We can now describe the elements of ) S(F (X,)) as pairs
¢, [P,61)

where T L> S is a function, T is a set of cardinality less than «, and

[P,¢] isan isomorphism class of X -labelled regular trees of arity T.

(@)

Now we must describe how maps in F (X,) compose, For this purpose
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we write
w = (f,[P,6]) where T L» S

g
Ol‘)_ - (grr s [‘Qa s \’Lo]) where Tc’ '; Sr

where & ¢€S.

We must describe w <« > as (b, [R,{]): for each te T, attach a copy of

(Qf(t)’ y f(t)) to the tip t of P, and call the resulting X, ~labelled regular

tree (R,%1). It has arity

1 -1
& €8S

We define the function

by the formula h(t',t) = gf(t) (t').

In order to understand the reason for these formulae it is necessary to get a
better picture of the operations (f, {P,£]). We already know how to picture
(P,£) as a tree with all but some of its tips labelled (the labelled tips correspond
to nullary operations of course). The purpose of the function f is to permute,
omit or repeat the "variables". Imagine f as a bundle of lines, where for

each ¢~ €S we draw a line from < to each element of f_l(O’) s or
conversely, from each element of T to its image in S.

Examples  f: {1,2,3,4{ — {1,2,3,4,5]

@)y =1, £2) =1, {3) =5, f(4) = 4.

L 2 3 4+ s
N

N

\ L
N

2
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Picture (f,[P,¢]) as

The whole point about composition of operations is that lines can be

ndisentangled”, so that the functionlike parts get pushed to the top, e.g.

</C G \\\ /\/
k‘;V N

- '~|4\;V}_

I hope the above picture makes clear the reason for the formulae given
above, In fact, pictures are not only more informative than words, they give
quicker proofs. Interms of pictures, the associativity of composition is

almost immediate. In symbols it is most tedious.

It is immediate from the definition that F (X y is «-bounded, Note that

(@)

the map éf in F(X,) is given by (éf\,[*,ﬁl) where ¢ : 1 —> S is the

insertion of ¢ , * is a one element tree and 2 denotes the empty labelling.

If G: X, —> Y, isamapin Carda , we get a map of theories

(@)

F G e F(a)(X*) —_ F(a)(Y*) just by relabelling, so the construction gives

a functor.

If xe X let us denote by x the type 1 tree with root labelled by x, with

tips in bijective correspondence with S
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We define a map

@)

S e X, =0, )

in Carda by assigning to x € XS the element (18,[ }—4] Jo It is not hard to

see that this gives a natural map

o (@)
/ 3 lCarda >{), F

which is to serve as the front adjunction,

(]

We point out that in F )(X*), the map (f, [P,£]) can be expressed as the

composite
- o
IT,[P,H), FO(X,),

where T —f—> S. It follows that any map of algebraic theories with domain

F(Q)(X*) is uniquely determined by its values on maps of the form (lT, [Bsh.

But every such element can be expressed as a composite

M, [PLe). < lv*,[Q*,“f*T >

where P' is of type 1, and each Q. is of type less than that of P. Hence,
’ i

(@)

by induction, maps with domain F' (X ) are uniquely determined by their

values on maps in the image of ~7(X*). S0 we define the end adjunction

(a)
€: F Q*ﬁlBath
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by requiring that €(A) s Fl@ L(A)) —> A be given by €(A) (18,[;21) = x.

It is now straightforward to verify that »I and & furnish front and end

(@)

« ;
adjunctions making ¥ left adjoint to .}, .

It is interesting to note that although each functor

F(a) : Card —> B th
e’ o

has a right adjoint, the direct limit functor
F : Card —> Bth

does not. Nevertheless, every object of Bth has a semisimplicial resolution
by free theories, and up to homotopy this resolution is functorial, For a similar

construction for topological algebraic theories see BOARDMAN AND VOGT .
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Exercises 11

Show that if « = ~M0 , then regular trees are finite, and every
map in a free finitary theory is a finite composite of generating

operations (i.e. trees of type 1).

Show that if o > M 0 it is not necessarily the case that every
map in a free a-bounded theory is a finite composite of generating

operations,

K X, = (&‘,)8,9‘,...) € Card,, show that 'Ql F(z)(X*) is the

free monoid on Xln

Show that subtheories of free theories are not necessarily free.
Hinty consider the free monoid on one generator t, and the

2 3
submonoid generated by t and t,
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12. Completeness of the category of bounded theories.
D

Algebraic theorics are themselves algebraic gadgets, but of a many
sorted type. That is to say, we may consider the functors ‘OS as a collectively

faithful family of forgetful functors.

Ve have already remarked that if A and B are algebraic theories,
the class of maps from A to B may not be a set if A is unbounded. To obtain a
legitimate category we can restrict our attention to bounded theories; of course,
many of the constructions we perform may work for certain unbounded theories for
reasons particular to the special cases in question. Apart from problems of boundedness,
the construction of limits and colimits of theories proceeds in a manner strictly analogous
to the constructions of § 4. For this reason we will merely sketch the outlines, leaving

tedious verification to the incredulous reader.

The construction of free theories shows that the functors Q’S must

preserve (and reflect) limits. So if

fa]
i
is a diagram of theories (not necessarily bounded) we define a theory B by the formula

HomB(BT, BS) = llr_n_ HomA. : i
i i T S

Since products commute with limits, B is a theory. The canonical projections define

maps B > Ai making B the limit of the diagram f‘Aij in the illegitimate category

of theories.

Let us interpret the notion of product of theories in terms of models.

Suppose that {AJ is a family of theories, indexed by a set L The functor

iel
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T [ Ya o .
/AL —E s S T —s S (12.1)
Jet cer -

has a left adjoint

. | TE .
S — 7S s 7 /A
- ler T L
where [—/‘is the functor taking an I-indexed family of sets fVif ie 1 to l/-TI Vi
i€

and V is the diagonal functor taking a set S to the constant family of sets, each equal

to 8. This adjoint pair defines a monad on S whose algebraic theory is clearly T A

. i
iel

(look at the Kleisli category). But (12.1) is tripleable, so we may identify

e X ¢

(774\,)‘5 ot TT A"

with (12. 1) as forgetful functor. Thus an f—t Ai - model is, as a set, just a

ie
product of Ai—models, and 2 homomorphism is a function which is a product of
homomorphisms of Ai~mode1s.
If p isthe projection from 17:_; Ai to A].. then p, is the projection from iTe‘—/—I—A?
to A;) and pb is the functor which takes an Aj—model X to the family of Ai—models,

le fwhere Yi =1 for i#]j, and Yj =X,

We have already defined, in § 5, the notion of subtheory. If A -i—> B
is a map of theories, then the image Imf of the functor fis a subtheory of B, and the
induced map A ——> Imf, makes Imf a quotient theory of A. Quotient theory is another

concept we defined in §5.

Just as for models, we define a congruence T’on a theory A to be an
equivalence relation on A, i.e. a subtheory of A x A such that for every set §,

_QS(T‘) is an equivalence relation on _QS(A).
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Note that unless A is bounded, the class of congruences on A may not be a set.

In any case, an intersection of congrdences on a theory is a congruence, so we may
talk of the congruence generated by a class of pairs of operations. If 7is a
congruence on A we may define the quotient theory A/;7, just as we did for models.
For any set S, QS(A//") is ﬂ-S(A)/QS( 7). Using congruences we can now construct

coequalizers of maps of theories. The coequalizer of

is B —= B/T" where 77 is the congruence on B generated by the pairs (f(«), g())

as (v ranges over all operations of any arity of A.

For any map A - B , we denote by Kerf the kernel pair of f, i.e.

Kerf > A
Lo
A - £ > B

is a pullback diagram. Then Kerfis a congruence on A, and A > A/Kerf is the

5> A. We have the usual factorization theorem that A/Kerf is

coequalizer of Kerf

canonically isomorphic to Imf.

In order to construct coproducts we have to restrict ourselves to bounded
theories, at least for the methods we outline here. Coproducts of unbounded theories
cannot exist in general; for example, the theory CH of question 3 ex. 2 hasno
coproduct with the free theory on one unary operation.

Suppose that {Ai R is a family of bounded theories. By the results of the previous

chapter we may write

A = POV
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where V.* is an object of Card, and T,i is a congruence on the free theory F(Vi*)'
i

Then

— .
where | is the congruence generated by the images of the congruences 7’) under

the maps

F(Vy,) ——>F(1LV,)

induced by the inclusions into the coproduct in Card.

In chapter 7 we saw that "semantics", the functor assigning to a theory
b U
A the functor A~ —

> S, had a left adjoint "algebraic structure®, which was
also a left inverse. Hence "semantics™ preserves and reflects colimits in Bth to
limits in the category of categories over 8.

Suppose that {Aif is a family of bounded theories. The limit of the functors

b
: A
UAi i

this functor as the category of families {Xi } , where Xi € A?, where the sets

> S is their joint pullback over S. We may interpret the domain of

UA (Xi) are all the same. That is to say, a j_LAi - model is a set which simultaneously
i {

has Ai—model structures for each i. A homomorphism of J/ Ai—models is a function

which is a homomorphism of Ai—models for each i. If

S A,
P i

- [/ Ai

b
is the canonical injection, then p is the functor which assigns to the object §Xi)z in

(l’IAi)b the Aj—model Xj' The description of p, is rather more complicated.
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Similarly, if

f
AT /=B S
is a coequalizer diagram of theories,
b
b f
k b ——
b > B 2 AP
b
g

will be an equalizer diagram of categories. We know in any case that functors of the
b

form f are faithful. The interpretation of the equalizer diagram is that Cb is

isomorphic to the subcategory of Bb of those B-models and homomorphisms of

b
B-models on which f and gb agree. This is a full subcategory, because the diagram

b
b f
Cb k Bb —— Ab
5
L
sl, e Y

commutes and UA is faithful.

As a corollary we have

f
Proposition 12. 2. If the map of theories A + B makes B into a quotient theory

b

of A, then fb : B > Ab is full and faithful.

We can prove this in an alternative way that requires no boundedness

conditions on A or B. If

is the front adjunctic  ~r the adjoint pair (f,, fb), then for each set S we have a
comumutative diagram
Qg (¢
O A J Q, (5
! k
Uk s

Upfr (5) —rr oo Uz Fe(S)
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. b

So if Qs(f) is surjective, f £, FA(S) is a quotient model of FA(S). But every model
is a colimit of free models, and a colimit of regular epics is a regular epic. Hence
."7)( is a regular epic for all A-models X. But the adjunction identity

b b

f&.vf =1

7 b
- b . . . S e . .
implies that Wf s monic. If it is also a regular epic, it is an isomorphism, and
b

hence f is also an isomorphism. Since fb reflects isomorphisms, the end

adjunction

b ¢
f f —> 1
3
Bb

is an isomorphism, and so fb is full and faithful.

The interpretation of proposition 12.2. is clear. If B isa quotient
theory of A it is obtained from A by adding more laws. Its models are precisely
those A-models which satisfy the extra laws.

In the other direction we have;

Proposition 12. 3.'

Let A _t > B be a map of bounded theories for which fb : Bb > Ab is full

and faithful. Then f is epic in Bth.

Proof.  Note that to say that f is epic does not imply that B is a quotient theory of
A. We have the famous example of the inclusion Z < @ , where €3 denotes the ring of
rationals. This is an epic map both in the category of rings and in the category of
theories.

f
Let B x B denote the cokernel pair of A > B, i.e. we have a pushout diagram

A

f

A —> B

H l

JE— *
B >PAB
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A
We have a canonical codiagonal map B 7\}3 > B. The map f is epic if and only
b

b
if /A is an isomorphism, if and only-if A" : B : > (B ~’§B)b is an isomorphism.

Now a (B alé B)b—model, as we have seen above, is a pair (X,Y) of B-models, such
N

b
that be = be. The functor A is given by Ab(Z) =(Z,Z). Now if fb is full and

faithful, be = be implies that X = Y, and so Ab is an isomorphism.

The methods of [Stenstriim] page 77 generalize to prove that fb is

full when f is essential and B@AB ——> B is an isomoxphism.
Isbell has pointed out that the inclusion of theories
A ———f———> B

where A is the theory generated by an associative binary operation, and B is the
b
theory of monoids, is epic, but that f is not full. For example, consider the

A-model given by two generators e, u satisfying

The endomorphism & given by F(u) = @(e) = e is not in the image of fb, even though

the A-model in question clearly has a B-model structure.
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Every bounded algebraic theory is a coequalizer of a pair of maps between

free theories. To see this, let A be a bounded theory. By the previous chapter, A

-

can be written as FO/V0 where FO is a free theory and 7 0 is a congruence on FO.

-

Now we may express /' . as Fl//”1 in like manner. The composites

0
- /,://7, %77 > Gaf give a pair of maps Flz:; F of which A is the

coequalizer. We call a coequalizer diagram

> A

with FO, F1 free theories a presentation of A. In practice this is the usual way of
describing theories. The generators of FO are the ¥primitive operations”®, the
generators of Fl are the "axioms?.

A presentation is the low dimensional part of a semi—simplicial free resolution

= —
L= FE=23h —A
[ Nm—el

where the generators of F2 represent the relations between the axioms, and so on.
“We shall not investigate this notion further, but will linger only to remark that we have
passed a signpost to a very major side road indeed, with little traffic on it as yet. We

refer the reader to [Beck 3, Boardman and Vost, Stasi)eff_].
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Exercises 12.

Show that a map of theories f is a regular epic if and only if Qs(f) is surjective

for all S.
In Bth show that pullbacks of regular epics are regular epics.

Show that for a fixed regular cardinal «, the pair of adjoint functors

_F
B th —
o

> Card
o

makes Bath tripleable over Carda .

Show that the functor
A-Alg ——> A-theories

preserves and reflects colimits,

For every A-model X construct a functor

}Z : (A-theories) > (X, Ab)

(see ex. T question 2) which assigns to A —f—> B the front adjunction
X —ﬁ—-—> fbf*X.
Show that the functors FATS) are collectively faithful, and that they preserve and

reflect limits and regular epics.

Show that if the A-model X is not free, the functor X may not preserve limits.
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§ 13. The Kronecker product

If A and B are bounded theories we denote their coproduct by A * B,
Let us denote the canonical injections by

i i
A s AxB, B— %

>AxB

(they are not necessarily monic, of course). We may consider the congruence " on

A B generated by pairs of the form (il(oz) c—iz(B)T R 12(5)?: il(oz)r) for all operations
@ of Aand B of B (the dummy superfixes cand © are supposed to indicate that the
operations act on S x T-indexed families of elements). We denote A*B// by AG B.
Informally, A® B is the theory with operations of both A and B, the axioms that
holdin A and B separately, and axioms saying that A-operations commute with
B-operations, and no other independent axioms. From the previous chapter we see that
A B-models are sets with an A-model structure and a B-model structure, such that
the A-operations are B-homomorphisms or vice-versa. It follows that Acc B)b is

simply the category of A-models in Bb, or equivalently, of B-models in Ab.

Ve may consider the full subcategory CBth & Bth of commutative

bounded theories. The inclusion functor has a left adjoint

A

> A/T,

where T’A is the congruence on A generated by pairs (& g , 8 a” ) for all operations

@, 8 of A. Thus A/T’A is A "made commutative®.

Proposition 13.1. If A and B are commutative bounded theories then

A® Bx A*B/FA*B. In particular & is coproduct in CBth,

The proof is a straightforward argument about congruences which we omit.
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Theorem 13. 2, Let A be a finitary theory, and let B be an annular theory. Then

A ® B is an anpular theory.

Proof. Let o be the imagein A® B of an n-ary operation of A, andlet + and 0
be the images in A" B of addition and zero in B. That @ commutes with + can be

stated by the equality

oz(x1+x‘1, es xn+x;l)=(y(x1, P xn)+oz(x', P x:l)

for any 2n-ple (xl, cee s X x'l, . x;l) of elements of an A®B-model. That «

commutes with 0 can be written
a©, ..., 0)=0.

It follows from these two identities, by successively taking some of the variables to

be zero, that

a(x X )= C!l(Xl)+ s b (x )

10 0 0 %y n

where ozl(x)= a(x, 0, ... , 0), a/2(x)= a0, x, 0, ... 0), etc. Now each of the
aj‘s is a B-linear unary operation, and any extension of a ring by linear unary

operations is a ring.

In particular, for any finitary theory A, ARZ is a ring, A finitary

theory A is annular if and only if A

> A® % is an isomorphism. The full and

faithful functor
. b
(Rings) ———— Bth
has a left adjoint, which we might call annulization
A—2>A XX
fin

where Af is the finitary part of A.

in
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Theorem 13, 3. Let A be the theory generated by a binary operation with a two-sided
identity., Then A® A is isomorphic to the theory generated by an associative

commutative binary operation with a two-sided identity.

Proof. Let @, ei be the images of the binary operation, two-sided identity
respectively, for the two factors, for i=1, 2, Since e1 commutes with e, we have

e1 = e2 = e say. Since ozl commutes with ozz we have

@ oy (%)%, ), @ go)) = Cglery () 1, %y0), @ (x

Xy5))

*11°% 291> X 117 %21 12°

for any Xpq0 Koo Fops Xgg inan A® A-model. The substitution Xy =Xy =€ gives

o =a,=0a, say. The substitution X T Kgg =€ gives «a(X,y)= a(y,x), sothat «o

22

is commutative. The substitution x21 =e, gives a(@(X,y),2z)= a(x, a(y,z)), so «

is associative. wWe refer the reader to [—Hilton] .

Corollary 13. 4. (Gp)® (Gp) > Z .

Suppose that G is a monoid, and that A is a theory. Because in [A, A7 we have

JEJ.A @’A.él/\ ~ I LA the structure maps G x G > G, 1 —= G determine

G
an A-algebra structure for ‘éfU\ .

Proposition 13. 5. As a theory .(LLA ~ A® G. The models are A-models with an

action of G as a monoid of endomorphisms,
Proof. Let (M,M ) be an algebra of the monad -é[/‘l on Ab. Then
M
(LM 2 (LLA)® M —= M
¢ G A
determines, for each g € G, an endomorphism of M

i
M—E 1l M M
¢
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where ig is the canonical injection. The usual axioms that 1+ must satisfy give a

homomorphism of monoids

G — > Hom b (M, M).
A

In exercises 12, number 4, we have remarked that the inclusion functor

A-Alg ——-> (A-theories)

preserves and reflects colimits. In exercises 10, number 3, we have defined the notion
of a commutative algebra over A. We leave it to the reader to check that the theory
associated to a commutative A-algebra is commutative, and that the'usual tensor
product of (A,A)-bialgebras, i.e. @A, gives coproduct of commutative A-algebras.

Thus, if

—B, A——>C

are maps of theories, if A — > B@AC stands for the coequalizer of

then in the algebraic case, our use of the symbol @A is entirely consistent.

Proposition 13.6.  Consider the pushout diagram

A ——————a————>B
| |
C

> B@AC

in the category of commutative theories, algebraic over A. Then there are natural
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isomorphisms

. b b
iy B ax = v* S

o b b
i) a B, ~ 6;%1/

iii) Bboz+:z y+6b

. b b
iv) o B+i 6+y

Proof. It is only necessary to prove i) as the others follow by symmetry and taking

adjoints. We may rewrite i) as the "cancellation™ law,
® ~
(B AC)®C X>=B&® N X

for Xe Cb. It is enough to show that we have an isomorphism when X is free.
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Exercises 13

IfA—f

> B is an algebraic map of theories, show that B is a quotient of A*QI(B).
If A, B, C are bounded theories establish an equivalence between [aA® B, ¢] and

the category of coproduct preserving functors A ——= [B, C1.

If A is a theory and S¢ Ql(A), show that there exists a theory A] S_lj and a map

p

of theories A > Al S—1J such that every map of theories out of A which takes

operations in S to isomorphisms factors uniquely through p.

Show that A B N Al S—lj is epic, and that pb is full and faithful.

De scribe a functor A ——> A, ~ (see [Beck,37 ).
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§ 14. Extensions

Ne call a map of bounded  #heerust

> B

an extension if it can be factored

A—L .

A® C

where i is the injection into the Kronecker product (not necessarily monic) and p is
a regular epic, i.e. Qs(p) is surjective for all S. Without loss of generality we may
assume that C is free.
Equivalently, f is an extension if B is generated by Imf and by a set of operations,
each member of which commutes with all the operations of Imf. If C itself may be
taken to be commutative, we call the extension central.

The following propositions are immediate consequences of the definition:

Proposition 14.1. A composite of (central) extensions is a (central) extension.

Proposition 14, 2, For any bounded theory. A, the inclusion
Z@A) —> A

is an extension,

Proposition 14.3. If f: A —> B is an extension, then f(Z(A))& Z(B).
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Suppose that X is an (A,A)-bimodel. The elements of UA(U (X)) are in

(A, A]

bijective correspondence with A-model homomorphisms
= A
FA(l) U[A,A]( )—->U[A,A] (X).

Ne denote by P (X) the subset of UA(U[A A (X)) corresponding to those A-model

homomorphisms which underly homomorphisms of (A, A)-bimodels

> X.

Thus, we set P(X)>~ Hom [A,A] (A,X). An element of P(X) we call a primitive
element. If A is an annular theory, an (A,A)-bimodel X is given by an (A,A)-bimodule;
an element x € X is primitive, if for all elements a of the ring A, ax=xa. Letus

look at another example : if A = (commutative rings), and X is an (A,A)-bimodel,

with co-addition o : X > X®ZX’ comultiplication : X > XQ@%X, counit

€: X > Z and cozero 0: X —=> %, then x € X is primitive if

ex)=x& 1+ 1& x

(X) = xX®@ x
ex) =1
0(x) = 0.

Because the elements of P (X) are homomorphisms, they commute with all the
operations of A. It follows that P(X) has a natural Z(A)-model structure given as
f
- o
follows: ifw € QS(Z(A)) and fA — X}C_ ¢ g san S-indexed family of maps in

[A,A7) , we define wE. to be the composite

where V is the codiagonal map. This is a homomorphism of (A,A)-bimodels because
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« commutes with all operations of A. In this way we get a functor

P :[A, A} — Z(A)b.

Ne say that an (A,A)-bimodel X is primitively generated if U

[A,4] (X) is generated
as an A-model by the primitive elements of X. We denote by {A} the full

subcategory of [A,A] of primitively generated (A,A)-bimodels.

Proposition 14.4. An (A,A)-bimodel X is primitively generated if and only if there

isa set S and a map of (A,A)-bimodels

| 1A L X

5
such that UA(U[A,A] (p)) is surjective.
Note that S may be taken to be U

za)F &)

Corollary 14.5. If X and Y are primitively generated (A,A)-bimodels, so is

X@A Y.

Proof. @A preserves "surjections".

Proposition 14. 6. If the map of theories A £ > B is algebraic, then B as an

rA,A] -bimodel is primitively generated if and only if f is an extension.

Proof. An element of UA(U 1 (B)) determines a unary operation of B. This

[A,A

operation commutes with operations of Imf if and only if it is a primitive element.

Theorem 14.8. Let A > B be an extension. Then there exists a unique functor

fz :{Ag >?/B§
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such that the diagram

{A’; —_——

)

[a,al [B,B]

commutes.

Proof. It is enough to prove the theorem for two special cases of f:-

(i) A £ —> B is regular epic, i.e. B is a quotient theory of A. Let X € {A} y

p

and let _I_S_L A > X be such that UA(U[A,A] (p)) is surjective.

Consider the diagram

s 3
1Y)
X (__,’; —i—lA f,(.\) 1\<;~v. %8
f R
4 x 4
A 3

b
> B~ which preserves coproducts,

WNe want to construct a functevn f, (X): B

so that f4. X =1 (X).f, and a natural map of regular epics

f,(p) = LLB— > £, (X).
- S -

NVe must have f, (X)(BS) = f*(X(AS)), so f,(X)is determined on objects. Now we turn

our attention to how f, (X) should be determined on maps of B. Let BU £ > BV be

amapin B. Since f is regular epic, there exists AU @ >AV in A such that

fla)= g
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Now we consider the commuting diagram

LLrw) —=22 o i nw
L
b, &
A2 ‘ W
X(A,) X > X(Av)

Applying the functor f, to this diagram, and using the identity
(LD ) < LT (de) = Li Iy ()

we get the commutative diagram

r L lg (5) LLF (v
LS_L 2 (V) ,?Lg(v)

'I{" (&0) ﬁ% {/;h//)

NG v

Fo (xt4) fo ) £, (xean)

Since f, preserves regular epics, f*(pAU) is epic, and so f_(X(@)) is independent of

the choice of «. So we set

f X)B) = £, (X(@)

L (p)BU = f*(pAU)

which clearly defines f,(X) and £, (p) uniquely. If

g : X — Y

is a map in fA ? , a similar argument shows that f, (&) must be given by

L@y = 50, ).
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(ii) For the second case, we suppose that

A————f T A C

ig the canonical injection for the first factor, where C is a free theory. An AZ C -
model may be described as a pair (M,f+) where M is an A-model, and p denotes an
action of the generators of C as A-model homomorphisms. Maps in (A& C)b may
be described as A-model homomorphisms which commute with the given actions.

Clearly fb(M,,M y=M. I X isan (A,A)-bimodel, we may define a functor

we 0 —— a@ 0+ (Mp) ——> (Hom, (X, M), Hom, (<, ).

Since

HOM 5, o (U p a7 ) GLp)= Hom ((Upy ap (X), M)

we see that the above functor is represented by an (A& C, A® C)-bimodel whose
underlying ACGC C-modelis f, UFA A] (X). We denote the representing (AE C, A& Cy-
bimodel by f (X). The fact that the action commutes with homomorphisms of

A-models gives us, by use of the Yoneda lemma, that a map of (A,A)-bimodels

X > X' lifts to a map of (A ® C, AR C)-bimodels £, X) > £, (X7).
Note that we have actually proved more than we need, for we did not assume that X was

primitively generated. It is immediate that f, (UL A)= i) (A C) and that £
HEKS <

%surjections™.

generated (AQ C, AK C)-bimodels, and so defines a functor
fa} ——{a@c/.
Since every extension can be factored

A > A®C

> B
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where the first map is as in case (i) and the second as in case (i), we have proved

the theorem.

It is not true in general that a map of theories A —= B induces a

functor [A,A] > [B,B]. The theorem above tells us that we have such a

functor if we restrict ourselves a} to maps of theories which are extensions, and

b) to primitively generated bimodels. The necessity of the latter condition is not hard
to understand. Once one has defined a map on the generators of a primitively generated
bimodel, to check that one has a map of bimodels it is enough to ensure that it takes

the generators to primitive elements. Readers who are used to manipulations with

Hopf algebras will recognize this phenomenon.

If A is a commutative theory, it is clear that the canonical inclusion
b .
A k-—av[-A,A] factors through {Af - Let B be an arbitrary theory, and let

j: Z(B) < B be the inclusion map.

Theorem 14.8. The composite

i,

Z@)P e { 2®)} ———{BJ < (B,B]

is left adjoint to
P: [B,B] ——s Z(B)b.

The proof is simply a corollary of the remarks above.

It may be interesting to study those theories B for which

>fB3

is an equivalence of categories. We cite as examples annular theories which are

iy s {Z(B)}

Azumaye algebras, and (Gp).



-115-
Exercises 14.

Tet A beatheory, X an A-algebra. Show that a primitive element of X corresponds
to a unary operation of X which commutes with the images of the operators of A under

A —> X,

In the algebraic extension
A = (rings) — (rings with a derivation) = X

find all the primitive elements of X.

Show that if every primitively generated (A,A)-bimodel is a colimit of free

(A, A)-bimodels then the functor

iy : f ) > A7

is an equivalence of categories.

Show that the conditions of ex. 3 above hold if for every set S0 and subfunctor T of

TT ¢ Ab — Ab

i 7/
So 7/ 1

whose equalizer is T.
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§ 15. Morita equivalence and Matrix theories.

Ve say that two theories A and B are Morita equivalent if there is an
. - b b . .
equivalence of categories A "= B". From theorem 8.5. it follows that in that case

there exist X e [A,B], Ye [B,A] such that
X@, Y 2B and Y& X~ A.
1t follows that

HomB(X, —) Y@B(— )
Hom, (¥,~)* X@ , (—)

since inverse equivalences are adjoint. From chapter 7 we see that 7(X) and

U['A B
U\- B.A] (Y) are regular projective generators.

Evaluating the above natural equivalences at X and Y respectively, we get

Ax HomB(X,X) , B HomA(Y,Y)

and YfHomB(X,B) X~ HomA(Y,A).

Since the sets 1) _(Z(A)) and Nat(/ /1 , 1 . )are in bijective correspondence, it
S S Ab Ab

follows that Morita equivalent theories have isomorphic centres, i.e. Z(A) > Z(B).
The functor 2 ——— X@A Z@AY : [A,A) —— [B,B] is clearly an equivalence

of categories with inverse K ——> Y@BK@'BX, and as this functor preserves free

bimodels and "surjections™ it specializes to give an equivalence éAj —e fB} R

If V isa fixed set, and A is an algebraic theory, let us denote by

MV(A) the full subcategory of A of all objects of the form A Clearly, MV(A)

Ve §
has coproducts, and every object in it is a coproduct of copies of AV' It follows that

MV(A) is an algebraic theory (but Bot a subtheory of A),
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¥ v= 2’1, 2y ey n} and A is an annular theory, then MV(A) is

again énnular, and is in fact the theory associated to the ring 6f n ~ n matrices with

coefficients in the ring A. For this reason, we call MV(A) a matrix theory over A.
Ne have an obvious functor from theories to theories given by
M_ (f
4O
— M, (B))

> M), @ SLIN B) > (M (A)

where Mv(f) is the functor f restricted to the subcategory MV(A), with obvious

natural equivalences

M (A2 M | o (A
MVl MVZ le V2

We also have a naturai map

[e2)

A : A —mem— MV(A)

given by AS — A o

Vg’ > é—l @, which corresponds in the annular case

to the embedding of 2 ring into the subring of diagonal matrices.

We shall abbreviate MV(—S—) to simply MV

For any theory A, consider the pair of adjoint functors

<t

The functor 7 has a left adjoint and satisfies Beck's tripleability criterion, so there

b
~ > A" suchtht

b
is an A-theory A £ > B, with an isomorphism B

b

—_— A

N

and fb £, = 71 as a monad on Ab. Thus
v

%

14
Qug(B) = U TTLLEES) = UTTEvxs) = L (1T 0A)
v
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These bijections induce an isomorphism of A-theories

B —=— M (A)

so we have discovered that MV(A)~mode1s may be interpreted as sets of the form

/_7 M, where M is the underlying set of an A-model, and that an MV(A)~mode1

v

homomorphism may be identified with a function 77 h where h isthe underlying function

v

of a homomorphism of A-models.

Proposition 15. 1. For any set V andtheory A, A and MV(A) are Morita
equivalent.

Corollary 15. 2. Z(MV(A)) X Z(A).

Proposition 15. 3. For any set V and theory A,

M, (A)Y ADM, .

Proof. An Mv—model is simply a set which is a V-th Cartesian power. But we
have seen that A-models which are V-th cartesian powers are MV(A)-models.

Corollary 15. 4. For any two bounded theories A, B

MA@ B) ¥ M (8)® B.

Proposition 15. 5. Any theory Morita-equivalent to S is of the form MV for some

set V.

Proof. Let 95_ 5 —— Ab be an equivalence of categories, andlet V be a

set such that

W =F, ).
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Then (’E(\/XS') ~ Q_Z—(/_SLV): L{Lif:_/\//':_/_,/, ,L;(;/) «_f_,a(S)
Hence

Hom , (A, A7)~ HomAb(FA(S), F (1)

Hom b(iﬁt(Vx 8), P (Vx T) > Hom (V S, Va T) =
A —
Hom ((MV)S, (MV)T)-

MV
> M.

This demonstrates an isomorphism A — v




-120-
Exercises 15.

1. In the theory MV, given a function g: V ——> V, let g(g) be the V-ary operation

which to a V-indexed family {'xi]

= § t
ieve N fxij]jev,ofelemensofan

Mv-model 77 X, assigns the element fx Show that
%

i,g(i)} ie V”°
(1) g (IV) is an affine operation,
(i) If i‘hkfk eV is a V-indexed family of functions from V to V, then

S @) <Sh)>=S(p) where p@i) = h__ (i)

g

2. Vith the notation of question 1, show that the theory generated by the operations ;(g)

subject to axioms (i) and (ii) is isomorphic to MV'

3. IfA—f

> B is an epic map of theories, show that

M () : M (8) > M, (B)

Is also epic. Also show that Mv(f) is monic when f is,
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