
22
Writing Search Algorithms in Functional Form
R.M. Burstall
Department of Machine Intelligence and Perception University of Edinburgh
1. INTRODUCTION
A great many machine intelligence programs perform some sort of search, and a number of
investigators have discussed techniques of searching trees.
One well known method, which we will call ‘depth-first’ search is particularly attractive
because it is very easy to program by recursion. The resulting ‘ “programs are short and
rather transparent. It has the disadvantage however that it is by no means the most efficient
sequence of searching a tree in many cases. Indeed if the tree is infinite it may cause the
search to go right out of control, The attractiveness of ‘depth-first’ recursive searching was
pointed out a long time ago by Newell, Shaw, and Simon, but they also remarked on its
pitfalls. More recently Slagle in his ‘Deducom’ program (see Slagle, 1965) used a ‘depth-first’
recursive search for convenience, but found that it led to severe limitations on the
problem-solving ability of his program. A number of examples of problems amenable to tree
search methods are given by Golomb and Baumert (1965).
Most machine intelligence tasks are difficult enough to make ease and transparency of
programming an important consideration. Hence it would be interesting to discover a
programming technique which would preserve the simple program structure associated with
recursive depth-first search while allowing a more efficient and flexible sequence of
searching. This paper puts forward such a technique. The search method in question which
we will call ‘controlled’ search is that used by the Doran and Michie ‘Graph Traverser’
program (see Doran, 1967, 1968; Doran and Michie, 1966; Michie, 1967).
We first consider different methods of searching, quite apart from the question of
programming. We then describe the recursive programming technique for depth-first
searching and discuss the possibility of introducing a new form of expression into
programming languages to enable us to treat
373
=

PROBLEM-ORIENTED LANG
UAGES
more general searches without
restructuring the program. It
turns out that this new form of
expression is not really a special
extension of programming
languages but can be defined in
terms of Landin’s generalized
jump operator. This is much
more satisfactory.
2. SEARCH TECHNIQUES
We will consider the problem of
searching a tree to find a node
with a given property. If it is
necessary to search the whole
tree, e.g. to find the node which
is optimal in some sense, the
Sequence in which the search is
carried out is unimportant. If
however we are content to
discover just one node with the
given property the sequence in
which the nodes are searched
may be of great interest. We will
consider three possibilities and
illustrate them using the following
simple problem. The tree is
defined in terms of two functions
of integers
f(n)=n²—2n+3
g(n)=2n²—5n+4
The problem is to find a value of
n with some property p by
repeatedly applying either f or g
toa starting value ny. For
example
n0 = 0
P(n)=30 < n <= 40
Part of the corresponding search
tree is shown in figure 1.
2.1. Depth-first search To search
a tree starting from a node n by
depth-first search:
1. Check whether 7 itself has the
required property. If so the
search terminates successfully ;
2. If” has no successors the
search terminates unsuccessfully
;
3. Take each successor of n in
some specified sequence and
perform a depth-first search
starting from that node. Continue
until one of the successors leads
to a successful search.
The sequence of search for the
problem stated above is shown
in figure 2, making the
assumption that the tree is
restricted to a finite one by
ignoring all nodes greater than
500, and taking (1) before g(n).
If this restriction is removed the
search fails completely as only
the topmost branch of the tree
will ever be explored.
The effectiveness of a depth-first
search can be improved by
choosing a suitable sequence for
taking the successors of a given
node, e.g. smallest first. But this
will not remedy the inability of a
depth-first search of an infinite
tree to recover from a single
wrong decision.
374

BURSTALL
ff (n) = n² —2n+3
g(n) = 2n²—S5n+4
P(n) = 30<n<= 40
n=38 satisfies p(n)
Figure 1. The search tree
Figure 2. Stages in depth-first
search
Figure 3. Stages in parallel
search
375

PROBLEM-ORIENTED
LANGUAGES
2.2.
Parallel
search
This
is in
a
sense
the
opposite
of
depth-first.
To
search
the
trees
starting
from
a
set
of
nodes
N
by
parallel
search:
1. If
N
contains
a
node
with
the
required
property
the
search
terminates
successfully.
2. If
N is
empty
or
no
node
in N
has
any
successors
the
search
terminates
unsuccessfully.
3.
Let
N’
be
the
set
of
all
nodes
which
are
successors
of a
node
in N
(taken
together
for
all
nodes
in
N).
Search
the
trees
starting
from
N’
by
parallel
search.
The
sequence
of
search
for
the
example
problem
is
shown
in
figure
3. It
avoids
the
difficulties
associated
with
infinite
branches
but
is
very
rigid
and
does
not
take
advantage
of
any
information
that
one
branch
is
more
promising
than
another,
i.e.
it
leaves
no
scope
for
heuristics.
2.3.
Search
controlled
by
a
reluctance
function
ose
nodes
whose
In
this
method
of
search
we
may
think
of a
‘frontier’
of
th
successors
have
not
been
examined.
This
frontier
is
extended
by
choosing
any
node
in it
and
examining
its
successors.
The
node
chosen
may
be
that
which
has
the
minimum
value
of
some
function
called
a
‘reluctance
function’,
normally
chosen
on
heuristic
grounds.
(Doran
and
Michie
call
this
an
‘evaluation
function’
but
we
use
the
word
‘evaluate’
here
in
another
sense
which
would
lead
to
confusion.
)
This
method
of
search
has
been
extensively
discussed
by
Doran
and
Michie
who
used
it in
their
program
called
the
‘Graph
Traverser’.
They
have
shown
that
given
a
suitable
reluctance
function
it is
an
effective
method
of
tackling
a
number
of
problems.
The
sequence
is
illustrated
in
figure
4.
The
main
point
to
notice
is
that
the
next
node
whose
successors
are
examined
is
not
necessarily
one
of
those
produced
at
the
previous
move,
ie.
the
frontier
will
be
pushed
forward
for
a
while
in
one
region,
but
if
the
reluctance
function
indicates
that
further
advances
here
are
not
as
profitable
as
had
been
anticipated
some
other
part
of
the
frontier
may
be
extended.
It is
easy
to
see
that
by
choosing
a
suitable
evaluation
function
parallel
search
and
depth-first
search
can
be
produced
as
special
cases
of
search
controlled
by
a
reluctance
function.
Specifically:
(i)
Parallel
search.
The
reluctance
function
is
the
distance
(number
of
arcs)
between
the
starting
node
and
the
given
node.
The
rule
that
the
frontier
node
with
least
value
of
the
reluctance
function
is
taken
first
causes
the
frontier
to
advanvce
one
layer
at a
time
(see
figure
5).
(ii)
Depth-first
search.
Taking
a
tree
with
binary
branches
for
simplicity
the
reluctance
function
assigns
to
each
node
a
binary
fraction
whose
digits
are
(left
to
right)
0 or
1
according
to
the
choices
made
in
obtaining
that
node
from
the
original
node
(see
figure
6).
376

BURSTALL
Figure 4. Controlled search. Reluctance function: r(n) = |n—35 |. Values of
reluctance are written above the frontier nodes
377

PROBLEM-ORIENTED
LANGUAGES
Figure
5.
Values
of
reluctance
function
to
produce
parallel
search
Figure
6,
Values
of
reluctance
function
to
produce
depth-first
search
378

BURSTALL 3. PROGRAMMING
We will write programs in functional notation using the Iswim language (Landin, 1966). The only point which needs explanation is that ‘let X¥=D’ denotes a definition qualifying the expression which follows, otherwise the notation should be fairly obvious even without an acquaintance with Is wim. We also use the conventional notation for sets and
operations on them.
We continue to use the previous example—this involves no real lack of generality, since the particular functions f and g are irrelevant, and the cases of more than two successors of a node or of more complicated trees follow naturally from our discussion.
We introduce one extra predicate terminal which is to be true if 7 has no successors, i.e. f and g are not to be applied to it.
Suppose first that we wish to obtain the set of all nodes which satisfy the predicate p. This set is computed by pnodes where
recursive pnodes (n)=if terminal (n) then nil else if p() then {7} else pnodes(f(n)) Upnodes(g(n))
We have assumed for convenience that if a node v satisfies p we are not interested in the successors of 7.
If we wish to obtain just one node satisfying p it is found using depth-first search by pnode, where
recursive pnode(n)=if terminal(n) then nil else if p(n) then {n} else let pfn=pnode(f(n)) if null(pfn) then pnode(g(n)) else pfn
It is this simple form of recursive program which makes depth-first search attractive in spite of its pitfalls. Its power may be seen by a slightly more complicated example where we require as a result the cost of getting to a node with property p, the cost of going from n to f(m) being cf(m) and that of going from n to g(n) being cg(n).
recursive cost(n)=if terminal (x) then oo else if p(7) then 0 else let costfn=cost(f(n)) if costfn= oo then cg(n)+pcost(g(n)) else cf(n)+ costfn
Here some work (adding up costs) is done on exit from the recursion.
It seems at first sight that in order to program the more sophisticated controlled search method a completely different program structure is necessary and the elegant recursive approach must be abandoned. Doran and Michie in their Graph Traverser’ use an approach which in its essentials may be expressed thus:
379

PROBLEM-ORIENTED
LANGUAGES
Suppose
that
phi(n)={f(7),
g(7)},i.e.
the
set
of
successors
of
n,
and
that
r(n)
is
the
reluctance
function
for
a
node,
saying
how
undesirable
it is.
pnode(n)=
let
N={n}
loop:
let
nmin=least(r,N);
if
exists
n in
phi(nmin)
[p(n)]
then
goto
out;
N:=N—{nmin}
U
phi(nmin);
goto
loop;
out:
result
any(p,phi
(nmin))
Here
least(r,nodes)
finds
the
member
of N
with
least
value
of r
and
any
(p,
phi(nmin))
finds
any
member
of
phi(umin)
satisfying
p.
This
could
of
course
have
been
written
recursively,
although
it is
essentially
an
iterative
algorithm.
Thus:
recursive
pnode(N)=
let
nmin
=least(r,N);
if
exists
n in
phi(nmin)
[p(n)]
then
any(p,phi(nmin))
else
pnode(N—{nmin}
U
phi(nmin))
The
depth
of
recursion
now
corresponds
to
the
total
number
of
nodes
examined
and
not
as
previously
to
the
distance
along
the
branch
from
the
start
to
the
current
node.
The
problem
above
of
costing
the
path
from
the
start
to
the
solution
node
is
no
longer
so
easy.
It
would
require
that
a
back
pointer
be
passed
on
explicitly
with
each
node
so
that
when
the
solution
is
found
a
retrace
can
be
done
and
the
cost
can
be
worked
out.
This
is
an
important
limitation
of
this
way
of
programming
controlled
search:
dealing
with
the
answer
when
found
needs
special
programming.
4.
ALTERNATIVE
EXPRESSIONS
The
point
of
this
paper
is to
show
how
the
controlled
search
can
be
programmed
in a
manner
very
similar
to
the
recursive
method
for
depth-first
search.
To
do
this
we
may
introduce
a
new
kind
of
expression
called
an
‘alternative
expression’
which
could
be
thought
of
as
an
extension
of
any
programming
language
of
the
ALGOL
family.
This
kind
of
expression
involves
a
special
evaluation
rule
which
we
will
explain
informally.
In
the
next
section
we
will
show
that
the
rules
for
alternative
expressions
can
be
made
quite
precise
in
terms
of
‘J’
operator,
a
form
of
generalized
jump
(Landin,
1966).
Indeed
if
our
programming
language
is
equipped
with
this
operator
or
an
equivalent
generalized
jump
facility,
we
do
not
need
to
introduce
alternative
expressions
as
a
new
feature
at
all
since
a
function
can
be
defined
which
has
the
same
effect.
Consider
the
expression
h(x+1,
y—2)
380

BURSTALL
To evaluate it we must evaluate BOTH X+1 AND y—2. But consider the expression h(x) <3 and k(x) >0
To evaluate this it is sufficient to evaluate EITHER h(x) <3 or to evaluate k(x)>0 provided that the one evaluated has truth value false (if not, the other expression must also be evaluated).
Now suppose that fpos(n) is the smallest number greater than n which has @ property p and fneg(n) is the largest number less than or equal to n which has p. Then if we just want an expression whose value is some number which has p we might write
fpos(0) alternatively fneg (0) (alternatively is a new basic symbol)
Here it would be sufficient to evaluate EITHER fpos(0) or fneg(0).
To evaluate this expression we might get the computer to work on both in turn taking as result whichever it managed to evaluate first.
Evaluating fpos(0) might well involve evaluating another such alternative expression and we would think of the possible calculation as a tree of which it would be sufficient to evaluate completely just one branch. If we do not Wish the computer to use its discretion as to which branch to evaluate we must provide
some extra information about each branch, i.e. reverting to our controlled search idea we must provide the value of the evaluation function for that branch. We will call this an alternative expression,
<alternative expression > ::= <expression > relue <real expression > alternatively
expression > relue <real expression > Spos(0) relue 5 alternatively fneg(0) reluc 10
We now program a search controlled by an evaluation function in a manner corresponding exactly to a depth-first search (we use r for the reluctance function).
recursive pnode(n)=if p(n) then {n} else (pnode(f(n)) reluc r(f(n)) alternatively pnode (g(n)) reluc r(g(n)))
The idea here is that in the recursive evaluation of pnode a lot of alternative expressions will be activated each with two component expressions. The evaluation mechanism is to consider all the component expressions which have been produced by activation of alternative expressions but have not yet been
evaluated themselves, and evaluate the one which has least value of the reluctance. This means that the evaluation mechanism has somehow to keep a list of component expressions to be evaluated, with suitable information about their environments, and a link to the alternative expression to which
381

PROBLEM-ORIENTED
LANGUAGES
they
belong.
We
assume
at
the
moment
that
there
is
only
one
such
list
for
a
particular
program.
One
or
two
remarks
are
worth
making.
There
is
no
reason
why
a
program
should
not
contain
more
than
one
alternative
expression.
In
this
case
the
tree
of
possible
evaluations
will
not
be
homogeneous
-—it
will
have
nodes,
some
of
which
correspond
to
activations
of
one
alternative
expression,
some
to
activations
of
other
alternative
expressions.
Likewise
there
is
no
reason
why
an
alternative
expression
should
have
just
two
components.
We
may
allow
more
or
even
less
than
two.
We
may
easily
want
the
number
of
components
to
be
determined
dynamically.
We
have
not
included
in
our
last
definition
of
pnode
the
case
where
n is
a
terminal
node.
One
way
of
dealing
with
this
would
be
to
insert
there
an
alternative
expression
with
no
components
i.e.
the
other
branches
of
the
tree
already
in
existence
are
to
be
followed
but
this
node
does
not
give
rise
to
any
new
branches.
It is
a
bad
principle,
however,
to
extend
a
programming
language
to
give
some
new
features
unless
we
are
quite
sure
that
the
extension
is
of
sufficient
generality.
Can
we
make
use
of
some
more
generally
desirable
feature
of
programming
languages
and
avoid
the
need
for
‘alternative
expressions’
?
5.
USE
OF
THE
J
OPERATOR
In
another
paper
presented
at
this
symposium*
Landin
puts
forward
a
jump
operator
‘J’
which
enables
his
functional
programming
language
Iswim
to
handle
departures
from
the
normal
sequence
of
evaluation,
such
as
error
exits.
The
case
of a
search
which
is
to
be
terminated
as
soon
as
it is
successful
is
closely
analogous
to
an
error
exit,
and
we
now
show
how
J
may
be
used
to
program
‘alternative
expressions’.
This
means
that
we
withdraw
the
above
proposal
for
alternative
expressions
(which
was
merely
an
explanatory
device)
and
offer
instead
an
equivalent
library
function
called
oneof.
We
keep
the
component
expressions
to
be
evaluated
together
with
associated
values
of
their
reluctance
function
on
a
list
called
jobs.
They
are
ranked
in
ascending
order
of
the
values
of
their
reluctance
function.
How
are
we
to
represent
the
component
expressions?
If
we
simply
write
down
the
expressions
they
will
get
evaluated
straight
away,
which
is
not
our
intention.
What
we
need
is a
function
which
when
applied
to a
list
of
jobs
will
produce
the
required
value.
It is
this
function
which
is
stored
on
the
jobs
list.
Before
it is
stored
however,
we
must
apply
J to
it.
This
means
that
if it
ever
gets
applied
it
will
return
its
result
as
the
result
of
the
‘oneof’
expression
of
which
it is
a
component.
Thus
the
task
of
the
function
oneof
is
to
add
to a
list
of
jobs
supplied
to it
as
a
parameter
the
two
component
functions
supplied
to it
with
their
associated
values,
but
only
after
applying
J to
them.
It
must
then
take
the
first
component
function
off
the
jobs
list
and
apply
it to
the
rest
of
the
jobs
list.
*
See
note
at
end
of
this
paper.
382

BURSTALL
The function oneof is as follows:
oneof (f,rf,g,rg,jobs) |
let jobs =addjob(J(f),rf, jobs);
let jobs =addjob(J(g),rg, jobs); let ((jh,rh), jobs) =next(jobs); N.B. next produces the head and tail
jh(jobs) of a list. where recursive addjob(jf,rf, jobs) =if null (jobs) then ((jf,rf)) else let ((jh,rh), jobs) =next(jobs);
if rf<rh then (jfrf)::(jh,rh)::jobs N.B. :: is an infixed else (jh,rh): :addjob(jf,rf, jobs) operator for ‘cons’.
Given oneof we can now write pnode again very easily
recursive pnode(n)=pnoden where pnoden (jobs) =if p(n) then {n} else oneof(pnode(f(n)),r(f(n)), pnode(g(n)),r(g(n)), jobs)
To find a node satisfying p starting from a node n0 we evaluate pnode(n0)(nil)
The action is not difficult to grasp once we realize that the functions denoted by Jf, jg, jh above always jump back as soon as they are executed to the oneof expression which gave them birth, returning their value as the result of that expression.
We have written oneof to take two components but there is no difficulty in writing it to take a list of any number of components (we supply a list of function-reluctance pairs and use maplist).
The difficulty about terminal nodes can then be dealt with by invoking
| oneof and giving it an empty list of component jobs. This allows existing branches of the tree to be processed further without creating any new ones.
Thus the definition of oneof as a library function enables us to carry out controlled searches in an elegant and transparent recursive manner without extending the language with any new form of expression or special evaluation mode. Although our example has been a simple one, much more complex searches may be programmed using the same function oneof.
NOTE ON LANDIN’S ¥ OPERATOR
P.J.Landin gave a talk at the Machine Intelligence Workshop about his J operator, a generalized jump facility. Unfortunately the written version was not available in time for publication in this volume. Since my paper makes use of this operator, Mr Landin has kindly agreed to my including a short explanation of it here. He hopes to publish a fuller account shortly and the
reference may be obtained from him at Queen Mary College, University of
383

PROBLEM-ORIENTED LANGUAGES
London. Thus, the work described below is due to Landin, but the explanation is mine and he is not responsible for any defects in it.
In a previous paper Landin (1966) introduced the notion of a ‘program point’; this is analogous to a function (or ALGOL procedure) but has a nonstandard mode of exit. Instead of returning control to the point from which it is called, it returns control to the point from which the function in which it is defined is called. An example in ALGOL format may help.
integer procedure f(x); integer x; integer program point f1(y); real y; f1:=entier(y x 100); real procedure g(z); integer z;
end of g;
y:=8(3/x);
end;
eho): u:=ut+l;
Here f1 is an integer program point (i.e. an integer procedure with nonstandard exit) defined directly within the integer procedure f. Its job is to return an answer which would do as the answer to its parent f in case computing the answer to f ran into some trouble, e.g. during the internal procedure g. Thus, if g calls f1 during execution of f, the subsequent
statement ‘zi=z+I1’ is not executed, but instead an immediate exit from its parent procedure f takes place, the result of f being f1(1/z), i.e. entier(1/z x 100). This value is assigned to u and the next statement executed is ‘u:=u+1’. Thus the remainder of g and f have been short circuited, with a forced exit returning the result of f1 as the result of its parent f.
In Iswim we have
if trouble >0 then f1(1/z); z:=z+1; :=g(1/x);
“=O u:=utl;
A possible improvement to this device, suggested by Landin in his talk, is to replace f1 by an ordinary integer procedure, say f0, and have a special

BURSTALL
operation J which when applied to f0 converts it into a program point. The parent of f1 would then be determined by the procedure in whose body the J occurred (i.e. the innermost such procedure). Thus we could write for example
let fO(y) =entier(y x 100); koe .
let f1=J(f0)
and f(z)=
if trouble >0 then f1(1/z); etc.
The point is that J incorporates a ‘fire escape’ leading to the exit point of its parent procedure, and attaches this fire escape to the procedure to which it is applied, for use instead of that procedure’s normal exit mechanism.
REFERENCES
Doran, J.E. (1967), An approach to automatic problem-solving. Machine Intelligence 1, pp. 105-23 (eds Collins, N.L. & Michie, D.). Edinburgh: Oliver and Boyd.
Doran, J.E. (1968), New developments of the Graph Traverser. Machine Intelligence 2, pp. 119-35 (eds Dale, E. & Michie, D.). Edinburgh: Oliver and Boyd.
Doran, J.E. & Michie, D. (1966), Experiments with the Graph Traverser program. Proc. R. Soc. (A), 294, 235-59,
Golomb, S.W. & Baumert, L.D. (1965), Backtrack programming. J. Ass. comput. Mach., 12, 516-24.
Landin, P.J. (1966), The next 700 programming languages. Communs Ass. comput. Mach., 9, 157-66.
Michie, D. (1967), Strategy building with the Graph Traverser. Machine Intelligence 1, pp. 105-23 (eds Collins N.L., & Michie, D.) Edinburgh: Oliver and Boyd.
Slagle, J.R. (1965), Experiments with a deductive question-answering program. Communs Ass. comput. Mach., 8, 792-8.
385
B2
3

