8 Borel subspaces

The central notion in measure theory is that of a measurable subset — it is the defining concept of a measurable space. With quasi-Borel spaces, measurable subsets are a derived notion, but take a nonetheless central role.

 ∇ 8.1. A measurable, or Borel, subset in a qbs A is a subset $U \subseteq A_{\downarrow}$ such that the preimage under every random element $\alpha \in \mathcal{R}_A$ is a Borel subset of the reals: $\alpha^{-1}[U] \in \mathcal{B}$. We denote by \mathcal{B}_A the set of Borel subsets of A.

Show that the measurable sets \mathcal{B}_A in a qbs A form a σ -algebra, and every random element is measurable w.r.t. this σ -algebra.

We denote the resulting measurable space by $\begin{bmatrix} \mathbf{M}eas \\ A \end{bmatrix} := \begin{pmatrix} A \\ \mathbf{Set} \end{bmatrix}, \mathcal{B}_A \end{pmatrix}, \text{ and call it the free measurable space over } A.$

■ Show that $U \subseteq A_j$ is measurable iff its indicator function $[- \in U] : A \to 2^{Qbs}$ is a qbs morphism from A into the discrete qbs on the two-element set.

 \bigtriangledown 8.2. Find the Borel sets of the discrete qbs 2^{2} and the indiscrete qbs 2^{2}_{Qbs} on two elements. Generalise this result to the discrete and indiscrete qbses over any set X.

 \bigtriangledown 8.3. Show that the Borel subsets of \mathbb{R} in the standard sense coincide with the measurable subsets of the qbs \mathbb{R} .

 \bigtriangledown 8.4. Let A be a qbs and $X \subseteq A$ be a subset.

Show that if $U \subseteq A_{\downarrow}$ is Borel in A, then $U \cap X$ is Borel in the subspace X:

 $U \in \mathcal{B}_A \implies U \cap X \in \mathcal{B}_X$

- Show that if X is itself a Borel subset, then $\mathcal{B}_X \subseteq \mathcal{B}_A$.
- \blacksquare Show that the previous clause may fail if X is not Borel.

The Borel subsets of a subspace can be quite different from the Borel subsets of its superspace. For example, we may have a Borel subset $V \in \mathcal{B}_X$ of the subspace that is not of the form $U \cap X$ for any Borel subset $U \in \mathcal{B}_A$ of the superspace.

Here's the intuition:

- A subset U in a qbs is measurable unless there is some random element that stops it from being measurable by mapping U onto a non-Borel inverse image.
- Wild' random elements may not factor through a subspace embedding $X \rightarrow A$.
- \blacksquare So a subspace may have more Borel subsets in X than in its superspace.

If you want to see this intuition playing out, here is how to construct a counter-example:

 $\nabla 8.5$. Let $C_1 \subseteq \mathbb{R}$ be a non-Borel subset and $C_2 \coloneqq \mathbb{R} \setminus C_1$ its complement, also non-Borel. Let $\mathfrak{Z} \coloneqq \{0, 1, 2\}$ be a three-element set, and define two primitive random elements $\alpha_i : \mathbb{R} \to \mathfrak{Z}$:

$$\alpha_0 r \coloneqq \begin{cases} r \in C_1 : 0 \\ r \in C_2 : 2 \end{cases} \qquad \alpha_1 r \coloneqq \begin{cases} r \in C_1 : 1 \\ r \in C_2 : 2 \end{cases}$$

Take $A \coloneqq \langle \Im, \operatorname{Cl}_{qbs} \{ \alpha_0, \alpha_1 \} \rangle$ to be the qbs over \Im with the smallest metaphorology (see Ex.7.9) containing α_0 and α_1 , and take $X \coloneqq 2 \subseteq \Im$.

Δ

- Show that $X, \{0\}, \{0, 2\} \notin \mathcal{B}_A$ are not Borel subsets in A.
- Show that if $\alpha \in \mathcal{R}_A$ is a random element in A, then either α is σ -simple or $2 \in \text{Im}(\alpha)$.

Δ

Show that $\{0\} \in \mathcal{B}_X$ is a Borel subset of the subspace X.

 ∇ 8.6. Let $f : A \to B$ be a qbs morphism. Show that:

- The inverse image under f restricts to a function $\mathcal{B}_f : \mathcal{B}_B \to \mathcal{B}_A$.
- $= \text{The underlying function } \begin{array}{c} f \\ \text{Set} \end{array} \text{ is a measurable function } \begin{array}{c} Meas \\ f \end{array} \text{ : } \begin{array}{c} Meas \\ A \end{array} \rightarrow \begin{array}{c} Meas \\ B \end{array} \text{.} \end{array} \begin{array}{c} \Delta \end{array}$

The collection of Borel sets has a universal property: it allows us to connect measurable spaces with quasi-Borel spaces as follows:

 ∇ 8.7. For a measurable space M, define its set of random elements by $\mathcal{R}_M \coloneqq \text{Meas}(\mathbb{R}, M)$.

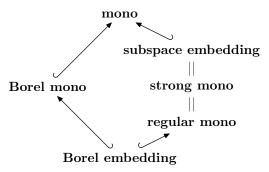
- Show that \mathcal{R}_M is a metaphorology, that is, $M_{\mathbf{Qbs}} := \langle M_{\mathbf{Set}}, \mathcal{R}_M \rangle$ is a qbs. ■ For every measurable function $f : M \to N$ between measurable spaces, show that its
- For every measurable function $f: M \to N$ between measurable spaces, show that its underlying function is a qbs morphism $f_{Qbs} : M_{Qbs} \to N_{Qbs}$.
- Noticing that $__{\mathbf{Qbs}}$: **Meas** \rightarrow **Qbs** is a (faithful) functor, show that it has a left adjoint equipping a qbs with its set of Borel subsets: $__{\mathbf{Qbs}}$.

 \bigtriangledown 8.8. The free qbs functor $\Box^{\mathbf{Qbs}}$: Set \rightarrow Qbs doesn't preserve countable products.

This point is a natural place to stop, but if you're having fun with this material, then the rest of this sheet studies the relationships between natural notions of 'subspace'.

- \blacksquare $m: A \Rightarrow B$ Monomorphisms: injective qbs morphisms.
- $m: A \hookrightarrow B$ Subspace embedding: injective on elements and surjective on randomelements that factor through the image.
- $m: A \rightarrowtail B$ Borel injections: monomorphisms whose image is a Borel subset.
- \blacksquare $m: A \leftrightarrow B$ Borel embeddings: subspace embeddings whose image is a Borel subset.

We establish their following mutual relationships, where all inclusions are proper:



 \bigtriangledown 8.9. Place the following injections in the hierarchy of monomorphisms above:

The injection $\top := \lambda \star .1 : [\ 1 \] \to [\ 2 \]$. The injection $\lambda x.x: [\ 2 \] \to [\ 2 \].$

- $= \text{ The injection } \lambda x.x: \begin{bmatrix} \mathbf{Qbs} \\ 2 \end{bmatrix} \mapsto \begin{bmatrix} 3 \\ \mathbf{Qbs} \end{bmatrix}.$
- The (subspace) inclusion $\lambda x.x: C \hookrightarrow \mathbb{R}$ where C is a non-Borel subset of \mathbb{R} .
- ∇ 8.10. Let $m: S \to A$ be a qbs morphism. Show that the following are equivalent:
- *m* is a subspace embedding, i.e.: there is a subset $X \subseteq [A]$ and an isomorphism $m' : B \xrightarrow{\cong} X$ satisfying:

$$\begin{array}{c} S & m \\ m' & \cong \\ X & \lambda x.x \end{array} A$$

■ *m* is *right-orthogonal* to every empimorphism $e: B \twoheadrightarrow C$: for every commuting square as on the left, there is a unique morphism $h: C \to S$ commuting the triangles on the right:

$$B \xrightarrow{e} C$$

$$f \downarrow = \downarrow g$$

$$S \xrightarrow{m} A$$

$$B \xrightarrow{e} C$$

$$f \downarrow = h_{----} \downarrow g$$

$$S \xleftarrow{m} A$$

(Morphisms that have this property are called *strong monomorphisms*.) m is an *equaliser* of some parallel pair of morphisms $f, g: A \rightarrow B$:

 \blacksquare *m* equalises *f* and *g*:

$$S \xrightarrow{m} A \xrightarrow{f} B$$

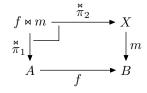
– and every equalising morphism $e: C \to A$ factors uniquely through m:

$$E \xrightarrow{e}_{A} \xrightarrow{f}_{B} \xrightarrow{e}_{E} \xrightarrow{e}_{m} A$$

(Morphisms that have this property are called *regular monomorphisms*.)

Δ

 ∇ 8.11. A class of qbs-morphisms is *admissible* when, for every pullback square as follows, in which $m \in \mathcal{M}$ then necessarily $\overset{\bowtie}{\pi}_1 \in \mathcal{M}$:



Show that:

- Monomorphisms are admissible.
- **—** Subspace embeddings are admissible.
- Borel embeddings are admissible.

Exercises

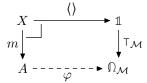
Δ

 \bigtriangleup

 ∇ 8.12. Let \mathcal{M} be an admissible class. An \mathcal{M} -classifier is a pair $\langle \Omega_{\mathcal{M}}, T_{\mathcal{M}} \rangle$ consisting of:

- \blacksquare a space $\Omega_{\mathcal{M}}$; and

such that for every \mathcal{M} -morphism $m: X \to A$, there is a unique qbs morphism $\varphi: A \to \Omega_{\mathcal{M}}$ for which the following square is a pullback square:



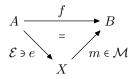
In this case, we denote this unique φ by $[- \in m[X]]_{\mathcal{M}} : A \to \Omega_{\mathcal{M}}$. Show:

- **—** If \mathcal{M} has a classifier in **Qbs**, then \mathcal{M} contains only subspace embeddings.
- The indiscrete Booleans $\langle 2_{Qbs}, \underline{true} \rangle$ form a subspace embedding classifier.
- The discrete Booleans $\langle 2^{, \mathbf{Qbs}}, \underline{\mathbf{true}} \rangle$ form a Borel embedding classifier.
- There are no monomorphism nor Borel monomorphism classifiers in **Qbs**.

Δ

A factorisation system $\langle \mathcal{E}, \mathcal{M} \rangle$ is a pair of classes of morphisms such that:

- \mathbf{z} and \mathcal{M} are closed under composition and contain all isomorphisms;
- every morphism $f: A \to B$ has an \mathcal{E} - \mathcal{M} factorisation:



every morphism $m \in \mathcal{M}$ is right-orthogonal to every morphism $e \in \mathcal{E}$ (cf. Ex.8.10):

 \bigtriangledown 8.13. Show that (epi, subspace embedding) is a factorisation system.

Δ

 \bigtriangledown 8.14. A qbs morphism $e: A \rightarrow B$ is a *strong epimorphism* when the its action on random elements is surjective:

 $e \circ - : \mathcal{R}_A \twoheadrightarrow \mathcal{R}_B$

Show that:

- The projection $\pi_1 : \mathbb{R}^2 \to \mathbb{R}$ is a strong epimorphism.
- Every strong epimorphism is surjective.
- Every map from a non-empty space into the terminal space $\langle \rangle : X \to 1$ is a strong epimorphism.

REFERENCES

If $f_i: A_i \to B_i$, $i \in I$, is a countable collection of strong epimorphisms, then their	product
$\prod_{i \in I} f_i : \prod_{i \in I} A_i \to \prod_{i \in I} B_i$ is a strong epimorphism.	Δ
\bigtriangledown 8.15. Find an epimorphism that is not a strong epimorphism.	Δ
\bigtriangledown 8.16. Show that (strong epimorphisms, mono) is a factorisation system.	Δ

References