REFERENCES

5 Sequences

 ∇ **5.1.** Show that the following sets are Borel in the extended real numbers $[-\infty, \infty]$:

The set of converging sequences (including sequences whose limit $\pm \infty$):

 $\operatorname{Converge}[-\infty,\infty] \coloneqq \left\{ \vec{r} \in [-\infty,\infty]^{\mathbb{N}} \middle| \exists \lim_{n \to \infty} r_n \right\}$

For every $a \in [-\infty, \infty]$, the set of sequences that converge to a:

ConvergeTo
$$a := \left\{ \vec{r} \in [-\infty, \infty]^{\mathbb{N}} \middle| \lim_{n \to \infty} r_n = a \right\}$$

■ The set of convergence rates:

ConvergenceRate :=
$$\left\{ \vec{r} \in (0, \infty] \middle| \lim_{n \to \infty} r_n = 0 \right\}$$

 \bigtriangledown 5.2. Show that the following higher-order operations are measurable:

- $= \lim : \operatorname{Converge}[\infty, \infty] \to [-\infty, \infty]$
- $= \liminf, \limsup : [-\infty, \infty]^{\mathbb{N}} \to [-\infty, \infty]$
- $= \arg\min, \arg\max: [-\infty, \infty]^{\mathbb{N}} \to \mathbb{N}_{\perp}$
- = min : $\mathcal{B}_{\mathbb{N}} \setminus \{\emptyset\} \to \mathbb{N}$, where $\mathcal{B}_{\mathbb{N}}$ is the measurable space structure induced by identifying the measurable subsets of $\mathbb N$ with their indicator functions in the countable-product measurable space $2^{\mathbb{N}}$. Δ

 \bigtriangledown 5.3. For every measurable space X, we may adjoin a new element \perp called 'bottom' representing the undefined value, and making the singleton $\{\bot\}$ measurable. Explicitly:

- The points are the disjoint union of the points in X and \bot : $_X_{\bot} \coloneqq \{\bot\} \amalg _X_{J}$.
- The measurable sets are generated by those of X and $\{\bot\}$:

$$\mathcal{B}_{X_{\perp}} \coloneqq \sigma(\{\{\iota_1 \bot\}\} \cup \iota_2 [[\mathcal{B}_X]])$$

We can use the undefined value to define partial measurable functions. Show that the following higher-order operations are measurable:

- $= \lim : [-\infty, \infty]^{\mathbb{N}} \to [-\infty, \infty]_{\perp}$
- $= \inf \{ [-\infty, \infty]_{\perp} \}^{\mathbb{N}} \to [-\infty, \infty]_{\perp}$ = inf, sup : $([-\infty, \infty]_{\perp})^{\mathbb{N}} \to [-\infty, \infty]$ = compress : $(X_{\perp})^{\mathbb{N}} \to (X^{\mathbb{N}})_{\perp}$ for any measurable space X which compresses the sequence by removing any intermediate undefined values. Δ

abla**5.4.** Define a measurable function approx_: ConvergenceRate $\times \mathbb{R} \to \mathbb{Q}^{\mathbb{N}}$, such that each approx_{\vec{b}}r is a sequence \vec{q} of rational numbers that converges to r at rate \vec{b} , so for all $n \in \mathbb{N}$: $|q_n - r| < b_n.$ Δ

References

1