6 Quasi-Borel spaces

Practice the basic definitions of qbses and their morphisms.
∇ 6.1. We can equip the real numbers with the structure of a qbs:

- The points are the real numbers.
- The random elements are the Borel measurable functions $\alpha: \mathbb{R} \rightarrow \mathbb{R}$

We'll write more succinctly below: $\mathbb{R}:=\left\langle_{L} \mathbb{R}, \operatorname{Meas}(\mathbb{R}, \mathbb{R})\right\rangle$.

- Check that \mathbb{R} satisfies the qbs axioms.
- Show that a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is Borel measurable iff it is a qbs morphism.
66.2. Let X be a set. The indiscrete qbs over X has all functions as random elements:

$$
\underset{{ }^{\mathbf{Q b s}}}{X}:=\langle X, \operatorname{Set}(\mathbb{R}, X)\rangle
$$

- Check that $\underset{\text { LQbs }}{X}$, satisfies the qbs axioms.
- Let A be any qbs. Show that every function $f:{ }_{{ }^{\text {Set }}} A^{\lrcorner} \rightarrow X$ is a qbs morphism:

$$
f: A \rightarrow \underset{\text { Qbs }^{\prime}}{X}
$$

66.3. A qbs structure on a set X is a collection $\mathcal{R} \subseteq X^{\mathbb{R}}$ of functions closed under the qbs axioms. A function $\alpha: \mathbb{R} \rightarrow X$ is σ-simple when:

- The image $\alpha[\mathbb{R}]$ is countable; and
- For every $x \in \alpha[\mathbb{R}]$, the preimage $\alpha^{-1}[x] \subseteq \mathbb{R}$ is a Borel set.

Show the σ-simple functions are the smallest (w.r.t. set inclusion) qbs structure on X.
∇ 6.4. Let A, B, C be qbses. Show that the following functions are qbs morphisms:
= Constant functions: for every $b \in{ }_{\left\llcorner\mathcal{S e t}^{\prime}\right.}{ }^{\prime}$, the function ($\lambda a . b$) : $A \rightarrow B$.

- Identity functions: id $:=(\lambda a . a): A \rightarrow A$.
- If $f: B \rightarrow C$ and $g: A \rightarrow B$ are qbs morphisms then so is the composition $f \circ g: A \rightarrow C$.
- Every σ-simple functions $\alpha: \mathbb{R} \rightarrow A$.
$\nabla 6.5$. Let X be a set. The discrete qbs over X has the σ-simple functions as random elements:

$$
\stackrel{\text { 「 Qbs }}{X}\urcorner:=\langle X,\{\alpha: \mathbb{R} \rightarrow X \mid \alpha \text { is } \sigma \text {-simple }\}\rangle
$$

By Ex.6.3, it is a qbs. Let A be any qbs. Show that every function $f: X \rightarrow \underset{{ }^{\text {S Set }}}{ }{ }^{A}$ is a qbs morphism:

$$
f: \stackrel{\ulcorner\text { Qbs }}{X}\urcorner \rightarrow A
$$

∇ 6.6. Let A, B be isomorphic qbses. Show that their sets of points and their sets of random elements are in bijection:

$$
A_{\lrcorner} \cong{ }_{\llcorner } B_{\lrcorner} \quad \mathcal{R}_{A} \cong \mathcal{R}_{B}
$$

(Recall from Ex.2.7 that two spaces A, B are isormorphic when there are two morphisms $f: A \rightarrow B$ and $g: B \rightarrow A$ that are each other's inverses: $f \circ g=\operatorname{id}_{B}$ and $g \circ f=\operatorname{id}_{A}$.)
∇ 6.7. Show that the three spaces:

- \mathbb{R}, defined in Ex.6.1;
- $\underset{{ }^{\mathbb{Q b s}}}{\mathbb{R}}{ }^{\mathbb{R}}$, defined in Ex.6.2; and

are pairwise non-isomorphic qbses.
∇ 6.8. Let $f: A \rightarrow B$ be a qbs morphism. Show:
- f is surjective iff f is an epimorphism in Qbs.
- f is injective iff f is a monomorphism in Qbs.

V6.9. We have a functor ${ }_{\text {LSet }^{-}}: \mathbf{Q b s} \rightarrow$ Set sending each $\mathrm{qbs} A$ to its set of points.

- Define the action on morphisms, and show it is functorial and faithful.

Show:

- 'Set $^{-}:$Qbs \rightarrow Set has both a left and a right adjoint. What are the unit, counit, and mate representations of each adjunction?
- The functor ${ }^{\text {L }}{ }^{-}$Set $^{\prime}$, is essentially surjective: every set is isomorphic to a set of points of some space.
- These left and right adjoints are fully-faithful, and neither essentially surjective.

References

