6 Quasi-Borel spaces

Practice the basic definitions of qbses and their morphisms.

 \bigtriangledown 6.1. We can equip the real numbers with the structure of a qbs:

- The points are the real numbers.
- \blacksquare The random elements are the Borel measurable functions $\alpha:\mathbb{R}\to\mathbb{R}$

We'll write more succinctly below: $\mathbb{R} := \langle \mathbb{R}, \mathbb{R}, \mathbb{R} \rangle$.

- \blacksquare Check that $\mathbb R$ satisfies the qbs axioms.
- Show that a function $f : \mathbb{R} \to \mathbb{R}$ is Borel measurable iff it is a qbs morphism.

Δ

Δ

 \bigtriangledown 6.2. Let X be a set. The *indiscrete qbs over* X has all functions as random elements:

$$X_{\mathbf{Qbs}} \coloneqq \langle X, \mathbf{Set}(\mathbb{R}, X) \rangle$$

- Check that X_{Obs} satisfies the qbs axioms.
- Let A be any qbs. Show that every function $f: A \to X$ is a qbs morphism:

$$f: A \to X_{\mathbf{Qbs}}$$

 $\not \sim \mathbf{6.3.}$ A *qbs structure* on a set X is a collection $\mathcal{R} \subseteq X^{\mathbb{R}}$ of functions closed under the qbs axioms. A function $\alpha : \mathbb{R} \to X$ is σ -simple when:

- The image $\alpha[\mathbb{R}]$ is countable; and
- For every $x \in \alpha[\mathbb{R}]$, the preimage $\alpha^{-1}[x] \subseteq \mathbb{R}$ is a Borel set.

Show the σ -simple functions are the smallest (w.r.t. set inclusion) qbs structure on X. Δ

 ∇ 6.4. Let A, B, C be abses. Show that the following functions are abs morphisms:

- Constant functions: for every $b \in {}_{\mathbf{Set}}^{B}$, the function $(\lambda a.b) : A \to B$.
- Identity functions: $id := (\lambda a.a) : A \to A$.

If $f: B \to C$ and $g: A \to B$ are qbs morphisms then so is the composition $f \circ g: A \to C$.

Every σ -simple functions $\alpha : \mathbb{R} \to A$.

 \bigtriangledown 6.5. Let X be a set. The *discrete qbs over* X has the σ -simple functions as random elements:

$$\begin{bmatrix} \mathbf{Qbs} \\ X \end{bmatrix} := \langle X, \{ \alpha : \mathbb{R} \to X | \alpha \text{ is } \sigma \text{-simple} \} \rangle$$

By Ex.6.3, it is a qbs. Let A be any qbs. Show that every function $f: X \to A$ is a qbs morphism:

 ∇ 6.6. Let *A*, *B* be isomorphic qbses. Show that their sets of points and their sets of random elements are in bijection:

$$A_{\lrcorner} \cong B_{\lrcorner} \qquad \mathcal{R}_A \cong \mathcal{R}_B$$

(Recall from Ex.2.7 that two spaces A, B are isormorphic when there are two morphisms $f: A \to B$ and $g: B \to A$ that are each other's inverses: $f \circ g = \mathrm{id}_B$ and $g \circ f = \mathrm{id}_A$.)

Δ

Δ

 \bigtriangledown **6.7.** Show that the three spaces:

R, defined in Ex.6.1;
R, defined in Ex.6.2; and Qbs
Gbs
C, R, defined in Ex.6.5

are pairwise non-isomorphic qbses.

 $\bigtriangledown 6.8$. Let $f : A \to B$ be a qbs morphism. Show:

- f is surjective iff f is an epimorphism in **Qbs**.
- f is injective iff f is a monomorphism in **Qbs**.

abla 6.9. We have a functor $\mathbf{\bar{set}} : \mathbf{Qbs} \to \mathbf{Set}$ sending each qbs A to its set of points.

Define the action on morphisms, and show it is functorial and faithful.

Show:

- $\begin{bmatrix} -\\ \mathbf{Set} \end{bmatrix}$: Qbs → Set has both a left and a right adjoint. What are the unit, counit, and mate representations of each adjunction?
- The functor _______ is essentially surjective: every set is isomorphic to a set of points of some space.
- \blacksquare These left and right adjoints are fully-faithful, and neither essentially surjective. imes

References