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2 Measurable spaces and functions

Try these exercises if you’re new to measure theory and are curious about it.

◸2.1. Show that each subset is Borel in each measurable space:

The diagonal {⟨r, r⟩ ∈ R2∣r ∈ R} in the Euclidean plane R2.
The 3-dimensional open ball {⟨x, y, z⟩ ∈ R3∣x2 + y2 + z2 < 1} in the Euclidean space R3.
The 2-dimensional sphere {⟨x, y, z⟩ ∈ R3∣x2 + y2 + z2 = 1} in the Euclidean space R3.

If you’re unsure how to approach the exercise, try the rest of this section first. ◿

◸2.2. Prove that the following functions over R are measurable, for all r ∈ R:

(r+)B λs.r + s

(r⋅)B λs.r ⋅ s ◿

We can organise measurable spaces and functions into a category called Meas: the
measurable spaces are the objects and the measurable functions are the morphisms between
these objects. You already know another category: Set. Its objects are sets and its
morphisms are functions between those sets. This course isn’t about category theory, but
we will take advantage of category theory to help us relate concepts that live in different
areas of mathematics. So if you never worked with categories before, you can use this course
to learn a bit more about categories. In that case, please take full advantage of myself and
your categorically-savvy course-mates!

If you are such a categorically-savvy person, you already covered the next few exercises
in the past and may want to skip to Ex.2.8.

◸2.3. Let’s spell out the category structure of Meas:

Objects are measurable spaces X, Y ;
Morphisms f ∶X → Y are measurable functions of the same type.
Identities idX ∶X →X are the identity functions λx.x of the same type.
The composition of f ∶ Y → Z and g ∶X → Y is the composed function f ○ g ∶X → Z.

Show the implicit statements in the last two clauses:

The identity function is a measurable functions idX ∶X →X.
The composition is a measurable function f ○ g ∶X → Z. ◿

Having spelled out the structure, we should now check that this structure is a category:

◸2.4. Show that:

identities are neutral w.r.t. composition — for all f ∶X → Y : f ○ idX = f = idY ○ f ; and
composition is associative: f ○ (g ○ h) = (f ○ g) ○ h. ◿

You may have found 1-line proofs for each of the category axioms for Meas. This may
feels silly and tedious. It also usually means there’s a structural reason why those proofs
work. Here is one. There is a functor ⌞−⌟ ∶Meas→ Set, that is, there is an assignment:

to each measurable space X, we assign set its set of points ⌞X⌟;
to each measurable function f ∶ X → Y , we assign its corresponding function between
the corresponding sets of points f ∶ ⌞X⌟→ ⌞Y ⌟;
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and this assignment respects identities and composition:

◸2.5. Show that:

⌞idX⌟ = id⌞X⌟ for every measurable space X; and

⌞f ○ g⌟ = ⌞f⌟ ○ ⌞g⌟ for every pair of composable measurable functions X
gÐ→ Y

fÐ→ Z. ◿

Equations between functions (and more generally, morphisms) leave the intermediate
spaces implicit in the background. We can mention both the spaces and the last two
equations diagrammatically:

X

X

⌞idX⌟ id⌞X⌟=

X

Y

Z

⌞f⌟

⌞g⌟

⌞g ○ f⌟ =

Vertices in the diagrams are objects, and directed edges are labelled by morphisms between
these objects. We’ll use a stretched equality notation to mark edges labelled by identity
morphisms, and often omit the actual label. Each face has a source and a sink, and two
paths from the source to the sink comprising of composable morphisms. The equality sign
on a face states an equality between the composion of the morphisms on the two paths
around the face. In the left diagram, it means ⌞idX⌟ = id⌞X⌟ and on the right diagram, it
means ⌞f ○ g⌟ = ⌞f⌟ ○ ⌞g⌟.

Let B and C be category structures, so they have objects, morphisms, identities,
and composition operators, but we make no assumptions that identities are neutral or
composition is associative. A functor F ∶ B → C is faithful when, for every pair of morphisms
of the same type f, g ∶ X → Y in B, we have: Ff = Fg Ô⇒ f = g. So the functorial action
on morphisms is injective.

◸2.6. Prove:

The functor ⌞−⌟ ∶Meas→ Set is faithful.
Faithful functors reflect categories: if F ∶ B → C is faithful and C is a category, then B is
also a category.
Deduce that Meas is a category. ◿

This kind of ‘short-cut’ is not a short-cut at all: we replaced 3 × 1-line proofs with the
same 3 × 1-line proofs, merely done abstractly, and had to prove ⌞−⌟ is a functor, which
involves 2 additional proofs.

My answer, and it may not be your answer, is that being able to relate concepts in Meas
and Set and how to transfer properties (like being a category) across these relationships is
a useful technique, and it’s worth learning. Here are a few more simple examples:

◸2.7. A morphism f ∶X → Y in a category C is an isomorphism when there is a morphism
g ∶ Y →X such that f ○ g = idY and g ○ f = idX :

X X

Y Y
f

f
g

=
=
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Show the following:

Every functor F ∶ B → C preserves isomorphisms: if f ∶ X → Y is an isomorphism in B,
then Ff ∶ FX → FY is an isomorphism in C.
Faithful functors reflect isomorphism pairs: for all X

fÐ→ Y
gÐ→ X in B, if Ff and Fg are

each others’ inverses in C then f and g are each others’ inverses in B.
The faithful functor ⌞−⌟ ∶ Meas → Set does not reflect isomorphisms: there is a
measurable function f ∶ X → Y that is not an isomorphism, but its underlying function
f ∶ ⌞X⌟→ ⌞Y ⌟ is bijective. ◿

Like any formalism, categories takes practice to pick the vocabulary up and to use it
effectively, for example, only when it’s needed. In the rest of the course, every statement
involving categories will be accompanied by its non-categorical formulation, or may be safely
skipped. Whether or not you choose to use the language of categories is up to you. At the
very least, these statements offer another source of exercise for you.

◸2.8. Let V be a measurable space and A ⊆ ⌞V ⌟ any subset.

Prove that BA B {U ∩A∣U ∈ BV } is a σ-algebra.
Prove that if A is measurable, i.e., A ∈ BV , then BA = {U ∈ BV ∣U ⊆ A}.
Show that the inclusion is a measurable function:

i ∶ A ⊆ V

ixB x

Let f ∶ V →W be a measurable function then the restriction of f to A is measurable:

f ∣A ∶ A→W

f ∣A xB fx ◿

◸2.9. Prove that the following functions are measurable:

( 1
−) ∶ R≠0 → R≠0 where R≠0 B R ∖ {0}.
∣−∣ ∶ R→ R≥0 where R≥0 B [0,∞). ◿

◸2.10. Show that the inclusion i ∶ A ⊆ V is cartesian in the following way: for every
measurable space W and measurable function f ∶ W → V such that Im (f) ⊆ A there is a
unique measurable function h ∶W → A with f = i ○ h:

⌞W ⌟

⌞A⌟ ⌞V ⌟
u

⌞i⌟

⌞f⌟

= Ô⇒

W

A V
h

i

f

=

in Set in Meas ◿

◸2.11. If you enjoyed the previous exercise, try generalising it. Let V be a measurable
space, A a set, and v ∶ A→ ⌞V ⌟ a function. Show that v has a cartesian lifting:

a measurable space v∗V ∈Meas, together with
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a measurable function v̇ ∶ v∗V → V ,

such that:

⌞v∗V ⌟ = A and ⌞v̇⌟ = v; and
for every measurable function f ∶W → V and function u ∶ ⌞W ⌟→ ⌞A⌟, if the equation on
the left holds then there is a unique measurable function h ∶W → v∗A satisfying ⌞h⌟ = u

and the eqution on the right:

⌞W ⌟

A ⌞V ⌟
u

v

⌞f⌟

= Ô⇒

W

v∗V V

h

v̇

f

=

in Set in Meas

This fact states that the functor ⌞−⌟ ∶Meas → Set is a Grothendieck fibration. We won’t
use this fact directly in the sequel. ◿

◸2.12. Let X be a set.

Prove that every intersection of σ-algebras over X is a σ-algebra over X.

Let U ⊆ ℘A be a family of subsets of A. The σ-algebra σ(U) generated by U is the smallest
σ-algebra containing U :

σ(U)B⋂{B ⊆ ℘X ∣B is a σ-algebra and U ⊆ B}

Prove:

If U ⊆ V then σ(U) ⊆ σ(V).
If U is already a σ-algebra, then σ(U) = U .
Let V be a measurable space and f ∶ ⌞V ⌟→X any function. Prove that f ∶ V → ⟨X, σ(U)⟩
is measurable iff for every A ∈ U , we have f−1[U] ∈ BV . ◿

◸2.13. Let X be a set, and set {[X]}B {U ⊆X ∣U is countable or U∁ is countable} ⊆ ℘X.

Show that {[X]} is a σ-algebra over X. This σ-algebra is known as the countable-co-
countable σ-algebra.
Show that {[X]} = σ({{x}∣x ∈X}) is the σ-algebra generated by the singletons. ◿

If you know some transfinite induction, you might want a predicative definition of σ(U).
In that case, have a look at the (extensive!) bunch of exercises in Sec. A.

◸2.14. Let A ⊆ ⌞V ⌟ be a subset of a measurable space V . Show that if U generates the
σ-algebra of V , then U ′ B A ∩ [U] generates the σ-algebra of the subspace A. ◿

◸2.15. Given families of subsets U ⊆ ℘X and V ⊆ ℘Y , define their box σ-algebra:

U ⊗ V B σ {A ×B∣A ∈ U , B ∈ V}

Let U , V be two measurable spaces.



5

Set U×V B ⟨⌞U⌟ × ⌞V ⌟,BU ⊗BV ⟩, and show that the cartesian projections π1 ∶ U×V → U

and π2 ∶ U × V → V are measurable.
Show that ⟨U × V , π1, π2⟩ is the categorical product: for every measurable space W and
pair of measurable functions f ∶ W → U and g ∶ W → V , there is a unique measurable
function ⟨f, g⟩ ∶W → U × V such that:

U V

W

U × Vπ1 π2

f g
⟨f, g⟩

Show that if U generates BU and V generates BV , then U ⊗ V = BU×V . ◿

◸2.16. Let V⃗ = ⟨Vi⟩i∈I be an I-indexed family of measurable spaces.

Find their categorical product ∏i∈I Vi.
Find an example family and an I-indexed family of measurable subsets Ai ∈ BVi so that
the cartesian product ∏i∈I Ai is not a Borel set in the categorical product ∏i∈I Vi. ◿

◸2.17. A measurable space 0 is initial when there is a unique measurable function
[] ∶ 0 → V for every measurable space V . Similarly, a measurable space 1 is terminal when
there is a unique measurable function ⟨⟩ ∶ V → 1 for every measurable space V .

(These concepts make sense in every category.)

Show that Meas has exactly one initial space.
Show that Meas has multiple terminal spaces.
Show that terminal spaces are the product of an empty family of spaces. ◿

◸2.18. Show that each family of subsets generates the σ-algebra of the given space:

{(−∞, a)∣a ∈ R}, {(−∞, a]∣a ∈ R}, {(−∞, q)∣q ∈ Q}, {[a, b)∣a, b ∈ R} all generate BR.
{C ∩ In

k ∣n ∈ N, k ∈ Fin 2n} generate the Borel sets of the Cantor space G. What are the
corresponding subsets of TB 2N?
Show that the set of hemispheres generates the Borel sets of the unit 2-sphere. ◿

◸2.19. Let A be a set. The powerset ℘A is a σ-algebra on A (why?). Define the discrete
measurable space over A by ⌜A⌝B ⟨A,℘A⟩. Show:

For every measurable space V , each function f ∶ A→ ⌞V ⌟ is in fact a measurable function

f ∶ ⌜A⌝→ V .

The set {∅, A} is also a σ-algebra on A (why?). Define the indiscrete measurable space over
A by ⌞ A

Meas
⌟B ⟨A,{∅, A}⟩. Show:

For every measurable space V , each function f ∶ ⌞V ⌟→ A is in fact a measurable function
f ∶ V → ⌞ A

Meas
⌟. ◿

◸2.20. Let A be a set and V a measurable space.
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Given a function f ∶ B → A, a subset X ⊆ B is f -saturated when x ∈ X and fx = fy

imply y ∈X. Show that the f -saturated sets form a topology:
The empty ∅ set is f -saturated;
Arbitrary unions of f -saturated sets are f -saturated; and
Finite intersections of f -saturated sets are f -saturated.
(In fact, arbitrary intersections of f -saturated sets are f -saturated.)

Show that f ∶ V → ⌜A⌝ is measurable iff every f -saturated set is measurable.
Let B be a set and X0 ⊆ B a subset. We say that a subset X ⊆ B is X0-atomic when
X0 ⊆X or X0 ∩X = ∅. Show that the X0-atomic subsets are a topology: the empty set
is atomic, and finite intersections and arbitrary unions of atomic subsets are atomic.
Show that f ∶ ⌞ A

Meas
⌟ → V is measurable iff all the measurable subsets in V are Im (f)-

atomic. ◿

◸2.21. Let ⌜R⌝B ⟨R,℘R⟩ be the discrete measurable space over R, and R̃ be the countable-
cocountable measurable space over R. We’ll show that the diagonal {⟨r, r⟩∣r ∈ R} ⊆ ℘ (R × R)
is not a measurable subset of ⌜R⌝ × R̃.

Define the following predicate Φ ⊆ ℘ (R × R). Given K ⊆ R × R, then Φ(K) holds when
there is a countable sequence of real numbers b⃗ ∈ RN such that for every x ∈ R, if there is
some y0 ∉ {bn∣n ∈ N} with ⟨x, y0⟩ ∈K, then for all y ∉ {bn∣n ∈ N} we have ⟨x, y⟩ ∈K.

The intuition behind Φ: there is a countable collection of equality constraints on the
second component we need to check in order to decide whether a pair is in K. Prove the
following.

Φ(K) iff there is some b⃗ ∈ RN and a function φ ∶ R→ 2N+1 such that the indicator function
of K is given by:

[(x, y) ∈K] =
⎧⎪⎪⎨⎪⎪⎩

∃n.y = bn, φ(x, ι1n) = true ∶ true
otherwise: φ(x, ι2⋆)

The diagonal {⟨r, r⟩ ∈ R × R∣r ∈ R} is not in Φ.
Φ(A ×B) for every countable and cocountable subset B ⊆ R.
Φ is closed under countable unions and countable intersections.
For every measurable subset K ∈ B⌜R⌝×R̃, both ΦK and ΦK∁.
Deduce that the diagonal is not a measurable set in ⌜R⌝ × R̃.

(If you find a shorter proof that the diagonal is not measurable, please let me know!) ◿
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