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B Lebesgue measurability

Measure theory is based on measurable sets, and the Borel sets of real numbers is the
minimal collection of these sets. While the Borel sets are closed under many operations,
they are not closed under all of them, and measure theorists and descriptive set theorists
investigate other, more general, classes of subsets: analytic sets, universally measurable
sets, and the Lebesgue sets. Nonetheless, in this batch of exercises we’ll see that the extra
level of generality Lebesgue measurability offers, which subsumes the other notions, doesn’t
get around Aumann’s theorem: classical measure theory seems incompatible with function-
spaces.

In the process, we’ll use measures, measure spaces, and the Lebesgue measurable sets.
These concepts come up in the context of higher-order measure theory, and these exercises
may serve as classical tutorial to these concepts.

An outer measure λ∗ on a set X is a function λ∗ ∶ ℘X → W, i.e., an assignment of a
non-negative, potentially infinite, real value to every subset, that is moreover monotonically
σ-subadditive: for every countable set of subsets I ⊆ℵ1 ℘X, and every A ⊆ ⋃B∈I B, we have
λ∗A ≤ ∑B∈I λ∗B.

◸B.1. Let λ∗ be an outer measure on a set X. Show:

The empty set has null outer measure: λ∗∅ = 0.
Monotonicity: A ⊆ B Ô⇒ λ∗A ≤ λ∗B.
σ-subadditivity: for every countably infinite family of subset A⃗ ∈ (℘X)N we have
λ∗ (⋃i∈N Ai) ≤ ∑i∈N λ∗Ai.
Every function λ∗ ∶ ℘X →W satisfying these three conditions is an outer measure. ◿

A measure λ on a measurable space X is a non-negative, σ-additive function, i.e., for
every countable set I and I-indexed family of pairwise-disjoint measurable sets ⟨Ui ∈ BX⟩i∈I ,
we have: λ (⋃i∈I Ui) = ∑i∈I λUi. A measure space Ω = ⟨⌞ Ω

Meas
⌟, λΩ⟩ is a measurable space

⌞ Ω
Meas

⌟ and a measure on it, and similarly an outer measure space is a measurable space
with an outer measure on it.

Every measure space has an outer measure space on its sets of points. This is the only
example of interest. Let Ω be a measure space. Define a function λ∗Ω ∶ ℘⌞ Ω

Set
⌟→W by setting,

for every A ∈ ℘⌞Ω⌟:

λ∗AB inf {λU ∣U ∈ B⌞ Ω
Meas

⌟, U ⊇ A}

So λ∗A is the least measure we can assign to A by approximating it from the outside with
a measurable set. Hence the name — outer measure.

◸B.2. Show that λ∗Ω is an outer measure on ⌞ Ω
Set
⌟, and that it extends λ: for every U ∈ BΩ,

we have λ∗U = λU . ◿

◸B.3. Show that, for every A ∈ ℘⌞Ω⌟ there is some measurable subset U ∈ BΩ, U ⊇ A,
satisfying λ∗A = λU . ◿

Let Ω be an outer measure space. A subset E ⊆ ⌞Ω⌟ is outer measurable when, for every
A ⊆ ⌞Ω⌟ we have:

λ∗A = λ∗(A ∩E) +λ∗(A ∩E∁)
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◸B.4. Let Ω be an outer measure space. For every subset E ⊆ ⌞Ω⌟, E is outer measurable
iff for every A ⊆ ⌞Ω⌟ we have: λ∗A ≥ λ∗(A ∩E) +λ∗(A ∩E∁). ◿

◸B.5. Let Ω be a measure space. Show that every measurable set U ∈ BΩ is outer
measurable in the associated outer measure space. ◿

◸B.6. Let Ω be an outer measure space.

The outer measurable subsets of an outer measure space form a σ-algebra GΩ.
The outer measure λ∗ restricts to a measure on ⟨⌞Ω⌟,GΩ⟩.

We denote the resulting measure space by ΩB ⟨⟨⌞Ω⌟,GΩ⟩, λ∗⟩. ◿

The Lebesgue subsets of R are the outer measurable subsets w.r.t. the Lebesgue measure.
The process: measure space Ω ↦ outer measure space ⟨⌞Ω⌟, λ∗⟩ ↦ measure space Ω seems
like it enhances the space with many more measurable sets. What we’ll show next is that
these sets aren’t too far off from the measurable sets we started with.

A null set in a measure space Ω is a subset Z ⊆ ⌞Ω⌟ that is contained in a 0-measure set:
there is some U ∈ BΩ with Z ⊆ U and λU = 0. Let NΩ denote the set of λ-null sets.

◸B.7. The null subsets form an ideal: If Z is a null set and U ⊆ Z is any subset, then U is
also a null set. Therefore they are closed under non-empty intersections. The null subsets
are closed under countable unions. ◿

◸B.8. Consider the Borel space R and the Lebesgue measure λ. Show that there is a λ-null
set that is not Borel measurable. ◿

◸B.9. Show that every null set is outer measurable. ◿

◸B.10. Let Ω be a measure space. Prove Ω and Ω have the same null sets: NΩ =NΩ
. ◿

Let Ω be a measure space. A negligible measurable subset is a measurable subset U ∈ BΩ
such that, for every measurable subset V ⊆ U , we have λV = 0 or λV = ∞. Non-null
negligible measurable subsets are sometimes called ‘atomic sets of infinite measure’, and
Vákár and Ong (2018) call the negligible sets 0-∞-sets. While it may seem strange to call
a set of potentially infinite measure negligible, in the context of integration, a Lebesgue
integrable function must vanish almost everywhere on negligible sets:

◸B.11. Let U be a negligible measurable subset in a measure space Ω. Let φ ∶ Ω → W be
a Lebesgue integrable random variable, i.e., a function with a finite expectation ∫ λφ <∞.
Show that λ {ω ∈ U ∣φω ≠ 0} = 0. ◿

A negligible subset is a set contained in a negligible measurable subset, and we denote
the set of negligible subsets by NΩ.

◸B.12. Let Ω be a measure space and consider the scaled measure ∞⊙λ. Show that:

Every measurable set U is negligible in the scaled measure, and therefore every subset
is negligible.
A subset is null in the scaled measure iff it is null in Ω. ◿

◸B.13. Consider the Lebesgue measure on R. Show every negligible subset is null. ◿

◸B.14. The negligible subsets generalise the null sets and have analogous properties:
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The negligible subsets form an ideal.
The negligible subsets are closed under countable unions.
Every negligible subset is outer measurable.
Every negligible subset of finite outer measure is null. ◿

The completion of a measure space Ω is the following measurable space Ω:

It has the same points ⌞⟨X, λ⟩⌟B ⌞X⌟.

Its σ-algebra is generated by the measurable sets and the null sets: BΩ B σ(BX ∪N).

◸B.15. Show that the following are equivalent for a subset U ⊆ ⌞Ω⌟:

U is measurable in the completion Ω
There is a measurable set V ∈ BΩ and a null set Z ∈NΩ such that U = V ∪Z.
There is a measurable V ∈ BX such that U ∖ V is null. ◿

◸B.16. Let E be an outer measurable subset in a measure space Ω. Show that if E has
finite outer measure, then:

There are measurable U, V ∈ BΩ with U ⊆ E ⊆ V and λU = λ∗E = λV .
E = EB ∪EN where EB ∈ BΩ and EN ∈N. ◿

A measure space Ω is σ-finite when there is a countable measurable partition ⌞Ω⌟ = ⊎i∈I Ωi

for which every subset has λΩi = 0.

◸B.17. Show that in a σ-finite space Ω, the outer measurable sets coincide with the
completion σ-algebra: B

Ω
= B

Ω
◿

Let Rλ be the measurable space over the reals with the Lebesgue σ-algebra. By the last
few exercises, every Lebesgue measurable set on the reals is a Borel set apart from a null set
of points. Similarly, a Lebesgue measurable function f ∶ ⌞ Rλ

Meas
⌟ → R is almost-everywhere

equal to a Borel measurable function g ∶ R→ R:

◸B.18. Let X be a measurable space whose σ-algebra is countably generated, i.e., there
is a countable set U ⊆ BX such that BX = σ(U). For every Lebesgue measurable function
f ∶ Rλ → X there is a Borel measurable function g ∶ R → X such that f(x) = g(x) λ(dx)-
almost certainly. ◿

So the class of Lebesgue measurable functions is not profoundly different from the class
of Borel measurable functions, especially as far as integration is concerned.

We are now ready to prove the Lebesgue-measurable version of Aumann’s theorem:

▸ Theorem (Aumann’s theorem for Lebesgue measurable evaluation). There is no σ-algebra
on BR making the membership relation [− ∈ −] ∶ BR × Rλ → 2 measurable. Similarly, there is
no σ-algebra on Meas(R,R) making evaluation eval ∶Meas(R,R) × Rλ → R measurable.

It suffices prove that the discrete σ-algebra on BR doesn’t make the membership predicate
measurable:

◸B.19. Assume that [− ∈ −] ∶ BR × Rλ → 2 is not measurable when we equip BR with the
discrete σ-algebra. Show the following.

The membership predicate is not measurable w.r.t. every σ-algebra on BR.
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Evaluation eval ∶ Meas(R,R) × Rλ → R is not measurable w.r.t. every σ-algebra on
Meas(R,R). ◿

From this point, we assume to the contrary that [− ∈ −] ∶ BR × Rλ → 2 is measurable.
Let:

U0 B [− ∈ −]−1[true] = {⟨U, x⟩ ∈ BR × R∣x ∈ U} ∈ BBR×Rλ
= ℘BR ⊗ (BR ∪NR)

Let eB ∶ b↠ BR, eN ∶ n↠NR, and e℘ ∶ p↠ ℘BR be enumerations of the Borel sets, null sets,
and powerset-over-Borel-sets of reals, respectively. Then we also have an enumeration of a
generating family for the box σ-algebra of the product space BR × Rλ :

e ∶ p × (b ⊎n)↠ [℘BR] × [BR ∪NR]B {U ×E∣U ⊆ BR, E ∈ BR ∪NR}
eB (e℘(π1−)) × ([eB , eN] (π2−))

By Ex.A.4 the σ-term interpretation function ⟦−⟧ e is surjective, and so there is some σ-term
t such that U0 = ⟦t⟧ e. Let V0 B suppt, and then V0 ⊆ p× (b⊎n) is a countable enumeration
of the variable names that appear in t, and we may restrict e to e0 ∶ V0 → [℘BR]× [BR ∪NR],
and consider t as a term t0 over V0 such that ⟦t0⟧ e0 = U0.

Let:

N B ⋃(p,ι2n)∈V0 eN ∈N;
Z a 0-measure Borel set with N ⊆ Z; and
S B R ∖Z equipped with the Borel-subspace σ-algebra.

◸B.20. Show that N is indeed a null set, so that Z exists. Show that S is an uncountable
Borel set. ◿

Define e1 ∶ V0 → ℘BR ⊗BS by setting:

e1(p, ι1b)B (e℘p) × (eBb ∩ S) e1(p, ι2n)B ∅

By re-interpreting the σ-term t0 with e1, we have a measurable set ⟦t0⟧ e1 ∈ BBR×S .

◸B.21. Show that for every U ∈ BR and s ∈ S, we have ⟨U, s⟩ ∈ ⟦t0⟧ e0 iff ⟨U, s⟩ ∈ ⟦t0⟧ e1. ◿
The last ingredient is to note that, by the original Aumann’s theorem, there is no σ-

algebra on BS that makes the membership predicate [− ∈ −] ∶ BS × R→ 2 measurable.

◸B.22. Use this last fact to get the desired contradiction. ◿
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