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3 Basic category theory

We now have enough examples to introduce three important organising concepts from
category theory: natural transformations, universal arrows, and adjunctions. This section is
aimed at readers who want to take this opportunity to make first steps in category theory,
but categorically-savvy readers might also learn some facts about the category of measurable
spaces. There’s too much material in this section for one sitting, so I recommend reading
the first part of each subsection, and referring back to the more advanced parts if you need
them later.

3.1 Natural transformations
Ex.2.15 constructs the product of two measurable spaces in the category of measurable
spaces. We can record the fact that we can construct this product generally by organising
products into a functor. The codomain of this functor is Meas, and its domain is the
following.

◸3.1. Let Meas2 be the following category:

Objects are pairs X⃗ = ⟨X1, X2⟩ of measurable spaces.
Morphisms f⃗ ∶ X⃗ → Y⃗ are pairs of measurable maps between the corresponding spacse
f⃗ = ⟨f1 ∶X1 → Y1, f2 ∶X1 → Y1⟩.

There’s nothing specific about Meas here — we may as well replace it with two generic
categories C1,C2 to construct the product category C1 × C2.

Spell out the objects and morphisms of C1 × C2, define identities and composition, and
show the resulting structure is a category.
Define and prove functorial the two projection functors πi ∶ C1 × C2 → Ci.
Let C be a category. Define and prove functorial the diagonal functor ∆ ∶ C → C × C. ◿

Binary products organise into a functor (×) ∶Meas2 →Meas:

The action on objects maps each X⃗ to the binary product X1 ×X2.
The action on morphisms maps each f⃗ ∶ X⃗ → Y⃗ to:

f1 × f2 B ⟨X1 ×X2
π1Ð→X1

f1Ð→ Y1, X1 ×X2
π2Ð→X2

f2Ð→ Y2⟩ ∶X1 ×X2 → Y1 × Y2

(We apply this functor to pairs of objects and morphisms in infix notation.)

◸3.2. Show that f1 × f2 is the unique measurable map satisfying for both i = 1, 2:

X1 ×X2

Y1 × Y2

Xi

Yi

f1 × f2 fi

πi

πi

=

◿
The equations in the previous exercise characterise the functorial action of the product,

and the concept that organises them is that the projections πX⃗
i ∶ X1 ×X2 → Xi collect into

a natural transformation πi ∶ (×)→ πi.
In general, let F, G ∶ B → C be functors. The structure of a natural transformation

α ∶ F → G, called a transformation from F to G is an assignment:
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for each object X ∈ B, a morphism αX ∶ FX → GX

The naturality property that makes a transformation a natural transformation is:

for every morphism f ∶X → Y in B, we have:

FX GX

FY GY

αX

αY

Ff Gf=

◸3.3. Let F, G ∶Meas2 →Meas are functors whose action on objects maps each X⃗ to the
product X1 ×X2. Show that if both projections are natural, i.e., for each i = 1, 2:

πi ∶ F → πi πi ∶ G→ πi

then F and G have the same action on morphisms. ◿

◸3.4. Define the structure and prove the required properties of the following:

The identity functor IdC ∶ C → C for every category C.
The diagonal natural transformation ∆ ∶ IdMeas → (×). ◿

◸3.5. Let Pred Meas↪Meas2 be the subcategory of Set2:

Objects are those pairs X⃗ in which:
the points of X1 are points in X2: ⌞X1⌟ ⊆ ⌞X2⌟
the σ-algebra on X1 is the subspace σ-algebra we defined in Ex.2.8.

So we have a measurable inclusion morphisms we write as i ∶X1 ↪X2.
Morphisms are those pairs f⃗ ∶ X⃗ → Y⃗ for which:

X1 X2

Y1 Y2

i

i

f1 f2= (1)

By stating it is a subcategory, we implicitly define the identities and composition in
Pred Meas by the identities and composition in Meas2.

Show that identities and composition are well-defined: identities satisfy the compatibility
equation (1).
Spell out the action of an inclusion functor Pred Meas↪Meas2, and show it is indeed
functorial, and moreover faithful.
Since faithful functors reflect categories (Ex.2.6), Pred Meas is a category.
Find functors dom, cod ∶ Pred Meas →Meas that make the subspace inclusions into a
natural transformation i ∶ dom → cod. ◿

Let B,C be categories. The category CB as functors as objects and natural
transformations α ∶ F → G between them as morphisms.

◸3.6. Define identities and composition in CB, faithful evaluation functors eval(−, X) ∶
CB → C for each X ∈ B, and a faithful diagonal functor ∆ ∶ C → CB. ◿
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◸3.7. Let F, G ∶ B → C be functors. Show that a natural transformation α ∶ F → G is an
isomorphism in CB iff each eval(α, X)B αX ∶ FX → GX is an isomorphism in C. ◿

Every category structure C has an opposite category structure Cop whose objects are the
same, but a morphism from X to Y in Cop is a morphism from Y to X in C. We will never
write morphisms f ∶X →Cop Y in Cop directly, but instead write them as f ∶X ← Y .

◸3.8. Show that a category structure C satisfies the defining properties of a category iff its
opposite Cop satisfies them. ◿

◸3.9. Let C be a category.

Show that f ∶X → Y is an isomorphism in C iff f ∶ Y ←X is an isomorphism in Cop.
Show that 1 is a terminal object of C iff 1 is an initial object of Cop. ◿

Category theorists use the adverb ‘just’ for this kind of process of unfolding all the
structure and comparing the required properties of two concepts. So:

an isomorphism in Cop is just an isomorphism in C;
an initial object in Cop is just a terminal object in C;
a natural isomorphism is just a natural transformation consisting of isomorphisms;
(Cop)op is just C;

and so on. Unlike its colloquial usage, the technical meaning of ‘just’ doesn’t imply
this process is simple, obvious, or straightforward. Category theorists tend to forget this
difference, which casual listeners sometimes find patronising. If you talk to someone who
might not know the technical meaning of ‘just’, try using the more neutral ‘amounts to’.

We define a contravariant functor F from B to C to be a functor F ∶ Bop → C.

◸3.10. Show that contravariant functors:

Reflect categories when faithful.
Preserve isomorphisms.
Reflect isomorphism pairs when faithful. ◿

◸3.11. A functor H ∶ B → C is fully-faithful when its action on morphisms is bijective: for
every morphism g ∶HX →HY there is a unique morphism f ∶X → Y such that Hf = g.

Show that fully-faithful functors lift isomorphic objects: if H ∶ B → A is fully-faithful
and g ∶HA

≅Ð→HB is an isomorphism, then there is an isomorphism f ∶ A ≅Ð→ B and H maps
it to g. ◿

We’ll now define the most important functor in category theory. Let C be a locally small
category: each collection of morphisms from X to Y is a set C(X, Y ) in our universe of sets.
We then have the following functor HomC ∶ Cop × C → Set:

Its action on objects sends a pair of objects to the set of morphisms between them:
HomC ⟨X, Y ⟩B C(X, Y ).
Its action on morphisms precomposes the contravariant argument and postcomposes the
covariant argument:

HomC ⟨f ∶X1 ←X2, g ∶ Y1 → Y2⟩ ∶ (X1
uÐ→ Y1)↦ (X2

fÐ→X1
uÐ→ Y1

gÐ→ Y2)
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We’ll write C(x, y) for HomC ⟨x, y⟩ for morphisms as well as objects. This notation matches
previous conventions, like the product functor, where we used the same notation for
morphisms and objects.

◸3.12. Show that HomC is a functor. Show that its curried version yC ∶ C → SetC
op

is also a functor. It is called the Yoneda embedding. Show that the alternative currying
y′ ∶ Cop → SetC is just yCop ∶ Cop → Set(C

op)op
for the opposite category. ◿

Because the iterated superscripts are hard to read, you’ll see the notation Ĉ B SetC
op

.

◸3.13. Let F ∶ Cop → Set be a functor from a small category C: a category with a set of
objects and a set of morphisms.

Type-check that λx.HomSetCop ⟨yx, F ⟩ ∶ Cop → Set, which we may write as λx.Ĉ(yx, F ).
Prove the Yoneda lemma: the operation ‘evaluate each natural transformation at the
identity morphism’ is a natural isomorphism Υ ∶ (λx.Ĉ(yx, F )) ≅Ð→ F .
Show that y ∶ C→ Ĉ is fully-faithful. ◿

3.2 Universality and representability
Universality lets us pin-point what makes a construction special. Let H ∶ B → C be a functor,
and A ∈ C an object. An arrow from A to H is a pair ⟨X, f⟩ consisting of:

an object X in B; and
a morphism f ∶ A→HX in C.

An arrow morphism h ∶ ⟨X, f⟩→ ⟨Y, g⟩ is a morphism h ∶X → Y satisfying:

A

HX

HY

f

g
Hh=

Arrows from A to H and their morphisms form a category. A universal arrow from A to H

is an initial object in this category.

◸3.14. Define the remaining structure of the category of arrows from A to H. Define a
faithful functor from this category structure to B. ◿

◸3.15. Let A be a set. Find a universal arrow from A to the functor ⌞−⌟ ∶Meas→ Set. ◿

◸3.16. Let V be a measurable space. Find a universal arrow from V to the functor
cod ∶ Pred Meas→Meas you defined in Ex.3.5. ◿

We define arrows from H to A similarly, as pairs ⟨X, f⟩ where f ∶ HX → A, and
morphisms:

A

HX

HY

f

g
Hh =

A universal arrow from H to A is then a terminal arrow in this category.

◸3.17. Find a universal arrow from the functor ⌞−⌟ ∶Meas→ Set to a set A. ◿
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◸3.18. Find a universal arrow from the diagonal functor ∆ ∶Meas →Meas2 to a pair of
measurable spaces X⃗. ◿

◸3.19. Let A be a set. A global geometry G on A is a family of sets G ⊆ ℘A. A globally
geometric space X is then a pair ⟨⌞X⌟,GX⟩ consisting of a set ⌞X⌟ of points and a global
geometry GX ⊆ ℘⌞X⌟. Given two globally geometric spaces X, Y , a globally geometric
morphism f ∶X → Y is a function f ∶ ⌞X⌟→ ⌞Y ⌟ such that, for every subset in the codomain
geometry U ∈ GY , its inverse image is in the source geometry f−1[U] ∈ GX .

Define the structure of a category Geom whose objects are globally geometric spaces
and their morphisms, and a faithful functor ⌞−⌟ ∶Geom → Set.
Let A be a set. Find universal arrows from A to ⌞−⌟ and from ⌞−⌟ to A.
Each σ-algebra is a global geometry, yielding a faithful functor ⌞ −

Geom
⌟ ∶Meas↪Geom.

Let X be a globally geometric space. Find a universal arrow from ⌞ −
Geom

⌟ to X. ◿

◸3.20. Let A be a set. Let RelA be the following category:

objects are binary relations R over A, i.e.: R ⊆ A ×A; and
there is a unique morphisms f ∶ R → S when R ⊆ S.

Let ⌞−⌟ ∶ EquivA ↪RelA be the subcategory consisting of the equivalence relations and its
associated faithful functor.

For every relation R, find a universal arrow from R to ⌞−⌟. ◿

Let I, C be categories. A diagram of shape I in C is a functor D ∶ I → C. A morphism
α ∶ D → E between diagrams is a natural transformation. The functor category CI then
serves as the category of diagrams and their morphisms.

A cone for a diagram D ∶ I → C is a pair ⟨C, c⟩ consisting of:

an object C ∈ C, called the vertex of the cone; and
a natural transformation c ∶ ∆C → D, i.e., an assignment for each i ∈ I of a morphism
C →Di in C such that for every u ∶ i→ j in I, we have:

C

Di

Dj

ci

cj

Du=

A cone morphism h ∶ ⟨B, b⟩→ ⟨C, c⟩ is a morhpism h ∶ B → C satisfying, for all i ∈ I:

C

Di

B
ci

bi

h

=

◸3.21. Show that a D-cone is just an arrow from the diagonal functor ∆ ∶ C → CI to the
diagram D ∈ CI . ◿

◸3.22. Find a category 2 so that the diagram category Meas2 is just Meas2. ◿
A limiting cone is a universal cone, that is, a universal arrow from ∆ to D. Its vertex is

called a limit of the diagram. Similarly, a colimiting cocone is a universal arrow from D to
∆, and its vertex is called the colimit of the diagram.
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◸3.23. Show that a terminal object is just a limiting cone for the diagram from the category
with no objects and no morphisms. ◿

◸3.24. Show that a limit in RelA is just the intersection of the relations in the diagram,
and a colimit is just the union. ◿

◸3.25. Let I be the category with two objects 0, 1 and four morphisms:

The two identities: id0, id1; and
f ∶ 0→ 1 and g ∶ 1→ 0.

Define composition to satisfy the neutrality axioms whenever an identity is involved, and in
the remaining cases define:

f ○ g B id1 g ○ f B id0

Define a faithful functor U ∶ I → Set sending 0 to {0} and 1 to {1} and deduce I is
indeed a category.
Show that a diagram D ∶ I → C is just an isomorphism pair. ◿

◸3.26. Let D ∶ I → Set be a small diagram — a diagram whose domain I is a small
category.

Define LB {x⃗ ∈∏i∈I Di∣∀u ∶ i→ j ∈ I.xj =Duxi} and ℓi ∶ L→Di to be the restriction of
the i-th component projection. Show that ⟨L, ℓ⟩ is a limiting cone for D.
Let R to be the relation on the disjoint union ∐i∈I Di given by ⟨i, x⟩R ⟨j, y⟩ when there
is some u ∶ i → j with Dux = y. Let ≡R be the reflexive-transitive-symmetric closure of
≡R. Define a cocone by setting C B∐i∈I Di/ ≡R and ci mapping each x ∈ Di to [⟨i, x⟩],
the ≡R-equivalence class of ⟨i, x⟩. Show that ⟨C, c⟩ is a colimiting cocone for D. ◿

Let D be a class of diagrams in a category C. We say that C is D-complete when it
has limit cones for all diagrams in D, and D-cocomplete when it has colimiting cocones for
all diagrams in D. By default, D is the class of all small diagrams. The category Set is
therefore complete and cocomplete. We can often use this fact to transfer limits and colimits
along functors into other categories.

Let H ∶ B → C be a functor, and D ∶ I → B a diagram. If c ∶∆C → D is a D-cone, then
Hc ∶∆HC →H ○D is an H ○D-cone. We say that H:

preserves D-limits when, for every limiting cone ⟨L, ℓ⟩, the cone ⟨HL, Hℓ⟩ is limiting for
H ○D;
reflects D-limits when, for every D-cone ⟨L, ℓ⟩, if the cone ⟨HL, Hℓ⟩ is H ○D-limiting,
then ⟨L, ℓ⟩ is limiting (and then H preserves this limit); and
lifts D-limits when, for every H ○D-cone ⟨L′, ℓ′⟩ there is a D-limiting cone ⟨L, ℓ⟩ and a
cone isomorphism ⟨HL, Hℓ⟩ ≅ ⟨L′, ℓ′⟩.

We extend these to a class of diagrams D by saying that H preserves/reflects/lifts D-limits
of the class if it does so for each diagram in D. Finally, we say that:

H is D-continuous when it preserves D-limits;
H generates D-limits when it preserves and lifts D-limits; and
H creates D-limits when it preserves, reflects, and lifts D-limits.
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We define analogous concepts for colimits.

◸3.27. Show that ⌞−⌟ ∶Meas→ Set lifts limits, but does not reflect limits. ◿

◸3.28. Show that if H ∶ B → C lifts D-limits and C is D-complete, then B is also D-complete
and H generates D-limits. Deduce that Meas is complete. ◿

◸3.29. Show that the Yoneda embedding preserves limits. ◿

Let C be a locally small category. A functor F ∶ Cop → Set is representable when there is
some object X and a natural isomorphism ρ ∶ yX

≅Ð→ F . We call the object X the representing
object and the isomorphism ρ the representation.

◸3.30. Let H ∶ B → C be a functor between locally small categories. Show that a
universal arrow ⟨X, f⟩ from A to H is just a representation ρ ∶ yBopX

≅Ð→ λx.C(A, Hx), and
the translation between f and ρ is given by the Yoneda lemma:

f ∈ C(A, HX) ΥX←Ð→ ρ ∈ B̂op(yX, λx.C(A, Hx)) ◿

Solution. A representation ρ is a family of bijections, natural in Y , between two hom-sets:

AÐ→HY

X Ð→ Y
(2)

The Yoneda lemma gives an arrow f B Υρ. The naturality of ρ implies that for all h ∶X → Y :

B(X,X) C(A,HX)

C(A,HY )B(X,Y )

ρX

ρY

yBophB(X,h) C(A,Hh)= =

idX ρX(idX) = ΥXρC f

ρY h =Hh ○ fh ○ idX = h

ρX

ρY

B(X,h) C(A,Hh)=

So the bijection ρY acts by λh.Hh ○ f , and that’s the universality of the arrow ⟨X, f⟩.
Conversely, a universal arrow ⟨X, f⟩ induces a bijective correspondences as in (2) given

by ρY (h ∶X → Y )BHh○f = C(A, Hh)f = (Υ−1
X f)Y h, and so ρ = Υ−1

X f , and also Y -natural.
◢

3.3 Adjunctions
The input to the universal arrow concept in the previous section is a functor and an object
A of C. By currying the object, we arrive at the concept of an adjoint:

Let U ∶ B → C be a functor. A left adjoint to U , ⟨FA ∈ B, ηA ∶ A→ U(FA)⟩A∈C , is an
assignment, for each object A ∈ C, of a universal arrow ⟨FA, ηA⟩ from A to U .
Similarly, let F ∶ C → B be a functor. A right adjoint to F , ⟨UX, εX ∶ F (UX)→X⟩X∈B,
is an assignnment, for each object X ∈ B, of a universal arrow ⟨UX, εX⟩.

Exerc i ses
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So an adjoint is a simultaneous assignment of universal arrows.
So far we’ve seen plenty of examples of adjoints:

◸3.31. Show that the functors ⌞−⌟ ∶Meas → Set and ⌞−⌟ ∶ Geom → Set have both a left
and right adjoints. ◿

◸3.32. Show that the functor ⌞ −
Geom

⌟ ∶Meas↪Geom has a right adjoint. ◿

◸3.33. Show that the functor ⌞−⌟ ∶ EquivA ↪RelA has a left adjoint. ◿

◸3.34. Show that the diagonal functor ∆ ∶Meas→Meas2 has a right adjoint. ◿

◸3.35. Show that every diagonal functor ∆ ∶ Set → SetI for a small category I, has both
a left and a right adjoint. Every diagonal functor ∆ ∶Meas →MeasI for a small category
I has a right adjoint. ◿

Let U ∶ B → C be a functor with a right adjoint ⟨F, η⟩. By Ex.3.30, each universal arrow
⟨FA, ηA⟩ comes from a representation ρA ∶ y(FA) ≅Ð→ λx.C(A, Ux), so we have a collection
of bijections, indexed by both A ∈ C and X ∈ Y :

ρA,X ∶ B(FA, X) ≅Ð→ C(A, UX) ρA,X ∶ (FA
hÐ→X)↦ (A ηAÐ→ U(FA) UhÐÐ→ UX)

It is natural in X, but if we want it to be natural in A, we need to equip F with a functorial
action on morphisms.

◸3.36. Show that there is exactly one action on morphisms such that:

F ∶ C → B is a functor; and
ρ ∶ (λx, y.B(Fx, y)) ≅Ð→ (λx, y.C(x, Uy)) is a natural transformation (and so forms a
natural isomorphism). ◿

An adjunction from C to B is a tuple ⟨F, G, ρ⟩ consisting of:

Two functors F ∶ C → B, the left adjoint and G ∶ B → C, the right adjoint; and
A natural isomorphism ρ ∶ (λx, y.B(Fx, y)) ≅Ð→ (λx, y.C(x, Uy)) called the mate bijection.

By Ex.3.36, each adjoint extends to a unique adjunction. This process exhausts all
adjunctions. Indeed, in an adjunction, each bijection ρA ∶ yFA

≅Ð→ λy.C(A, y) is a
representation. By Ex.3.30, setting ηA B ΥF AρA ∶ A → UFA gives a simultaneous
assignment ⟨FA, ηA⟩A∈C of universal arrows from A to U , i.e., a left adjoint to U . Using a
similar argument for right adjoints, we have that an adjunction is just an adjoint (left or
right) to the appropriate functor in the adjunction.

Given an adjunction, as we’ve seen, the universal arrows are given by:

ηA B ρA,F AidF A = ΥF A(ρA) εX B ρ−1
UX,X idUX = ΥUX(ρ−1

X )

◸3.37. Show that η ∶ IdC → U ○ F and ε ∶ F ○ U → IdB are natural. Can you do it by
appealing to the naturality of the Yoneda lemma? ◿

Solution. We’ll do so for η, the proof for ε is similar. We need to show, for f ∶ A→ B in C:
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A UFA

UFBB

f UFf

ηA

ηB

=

The Yoneda lemma in question is the natural isomorphism:

Υ ∶ (λx.B̂(yx, λy.C(A, Uy))) ≅Ð→ (λx.C(A, Ux)

B̂(yFA, λy.C(A,Uy)) C(A,UFA)

C(A,UFB)B̂(yFB, λy.C(A,Uy))

ρA ηA

ηB ○ f = UFf ○ ηA
(λh.ρA(h ○ Ff)) =

↑
ρ-naturality

(λh.ρBh ○ f)

ΥFA

ΥFB

B̂(y(Ff), λy.C(A,Uy)) C(A,UFf)=

as we wanted. ◢

We have εF A ○ FηA = ρ−1
F A(ηA) = idF A and similarly UεX ○ ηUX = idUX , and we arrived

at the following concept.
A formal adjunction ⟨F, G, η, ε⟩ consists of:

Two functors F ∶ C → B, the left adjoint and G ∶ B → C, the right adjoint; and
Two natural transformations η ∶ IdC → U ○ F , the unit, and ε ∶ F ○U → IdB, the counit.

satisfying the following triangle equalities, for every X ∈ B and A ∈ C:

UX UX

UFUXFA FA

FUFA

FηA εFA

= ηUX UεX
=

The term ‘formal’ here is used in the Australian sense: it involves categories,
functors (morphisms between categories), and natural transformations (morphisms between
functors), and so can be generalised to ‘formal’ categories that have 0-cells (objects), 1-cells
(morphisms between 0-cells), and 2-cells (morphisms between 1-cells).

We’ve shown that every adjunction gives rise to a formal adjunction. The mate
isomorphism ρ is determined by η as:

ρA,XhBHh ○ ηA = (Υ−1
F AηA)Xh (3)

Therefore, this formal adjunction is determined uniquely. To see this process is exhaustive,
take any formal adjunction, and set ρA B Υ−1

F AηA ∶ yFA → λy.C(A, Uy) using the Yoneda
lemma as in (3). Then ρA is natural.

◸3.38. Show that ρA is an isomorphism. ◿

Solution. Define ρ−1
A,Xh′ B εX ○ Fh′ and show it is inverse to ρA,X by direct calculation.

For example, take any h′ ∶ A→ UX in C, and show that h = ρA,X(ρ−1
A,Xh) = UεX ○UFh′ ○ η:
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A UFA

UFUXUX

UX

ηA

UFh′

Uε

h′

h′

ηUX

id
=

η-nat

=

triangle
=

as we wanted. ◢

Since ρA is a natural isomorphism, by Ex.3.30, we have a universal arrow ⟨FA, ηA⟩ from
A to U , so we have a left adjoint to U , hence an adjunction.

◸3.39. Check that the resulting formal adjunction is our given formal adjunction. ◿
Summarising, a formal adjunction is just an adjunction, which in turn is both just a left

adjoint F to a functor U ∶ B → C and just a right adjoint U to a functor F ∶ C → B. We
write ρ, ⟨η, ε⟩ ∶ F ⊣ U ∶ B → C where ρ is the mate isomorphism of the adjunction, and η is
the unit and ε the counit of the formal adjunction.

◸3.40. Let ⟨η, ε⟩ ∶ F ⊣ U ∶ B → C and let H ∶ C → D. Show that if ⟨A, v⟩ is a universal arrow
from V to H, then ⟨FA, V

vÐ→HX
HηAÐÐ→HU(FX)⟩ is a universal arrow from V to H ○U .

Deduce that given two composable adjunctions F1 ⊣ U1 and F2 ⊣ U2:

A B C

F2

U2

F1

U1

� �

their composition is also an adjunction F1 ○ F2 ⊣ U2 ○U1. ◿

◸3.41. Show that right adjoints preserve limits and left adjoints preserve colimits. ◿
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