1 Borel sets basics

Try these exercises if you're new to Borel sets of real numbers.
$\nabla 1.1$. Show that the Borel sets are closed under:

- finite unions;
- countable intersections;
- translations:

$$
A \in \mathcal{B}_{\mathbb{R}} \quad \Longrightarrow \quad r+[A]:=\{r+a \mid a \in A\} \in \mathcal{B}_{\mathbb{R}}
$$

$\nabla 1.2$. Show that the following sets are Borel $(a, b \in \mathbb{R})$:

- $[a, b] ;$
- $\{a\}$;
- $(-\infty, a]$;
- $[a, b)$;
- Q: the rational numbers

Recall the limit superior and limit inferior operations on sequences of subsets $\vec{A} \subseteq X^{\mathbb{N}}$, thinking of them as subsets that vary in discrete time:
$\limsup _{n \rightarrow \infty} A_{n}:=\bigcap_{k \in \mathbb{N}} \bigcup_{\ell \geq k} A_{\ell}$: elements appearing infinitely often in the sequence; $\liminf _{n \rightarrow \infty} A_{n}:=\bigcup_{k \in \mathbb{N}} \cap_{\ell \geq k} A_{\ell}: \quad$ elements appearing in almost all the sequence; $\lim _{n \rightarrow \infty} A_{n}:=\liminf _{n} A_{n}=\limsup { }_{n} A_{n}$ when the two limits coincide.

If the elements of the sequence are Borel, so are the two limits.
For example, use sequences 3 -valued indexed by natural numbers $\vec{x} \in\{0,1 \text {, wait }\}^{\mathbb{N}}$ to represent possibly-blocking streams of bits. Let $A_{n}:=\left\{\vec{x} \mid x_{n} \neq\right.$ wait $\}$. Then:

- $\limsup \sin _{n} A_{n}$ are the streams that always produce more output; while
$=\liminf A_{n} A_{n}$ are the streams that eventually stop blocking.
∇ 1.3. Practice manipulating limits of sets.
- (Taken from Wikipedia.) Calculate the two limits for the following sequences:
$=\left\langle\left(-\frac{1}{n}, 1-\frac{1}{n}\right)\right\rangle_{n}$
$=\left\langle\left(\frac{(-1)^{n}}{n}, 1-\frac{(-1)^{n}}{n}\right)\right\rangle_{n}$
$=\left\langle\left\{\left.\frac{i}{n} \right\rvert\, i=0, \ldots, n\right\}\right\rangle_{n}$
- Show that:
$\bigcap \vec{A} \subseteq \lim \inf \vec{A} \subseteq \lim \sup \vec{A} \subseteq \bigcup \vec{A}$
- What happens to the two limits when $A_{n} \subseteq A_{n+1}$ and when $A_{n} \supseteq A_{n+1}$?
- This is the indicator function of a set $A \subseteq X$:

$$
\begin{aligned}
& {[-\in A]: X \rightarrow\{0,1\}} \\
& {[x \in A]:= \begin{cases}x \in A: & 1 \\
x \notin A: & 0\end{cases} }
\end{aligned}
$$

Show that:

- $\cup \vec{A}=\left\{x \in X \mid \sup _{n}\left[x \in A_{n}\right]=1\right\}$
$=\limsup \vec{A}=\left\{x \in X \mid \lim \sup _{n}\left[x \in A_{n}\right]=1\right\}$
$=\liminf \vec{A}=\left\{x \in X \mid \liminf _{n}\left[x \in A_{n}\right]=1\right\}$
$=\cap \vec{A}=\left\{x \in X \mid \inf _{n}\left[x \in A_{n}\right]=1\right\}$
∇ 1.4. Let's construct the Cantor set. For each $n \in \mathbb{N}$, let $\operatorname{Fin} n:=\{0, \ldots, n-1\}$ be the n-th cardinal. We define:

$$
I: \coprod_{n=0}^{\infty} \operatorname{Fin} 2^{n} \rightarrow\left\{[a, b] \left\lvert\, b-a=\frac{1}{3^{n}}\right.\right\} \subseteq \mathcal{B}_{\mathbb{R}}
$$

as follows, writing $I_{k}^{n}:=I\left(\iota_{n} k\right)$ for each $n \in \mathbb{N}$ and $k \in \operatorname{Fin} 2^{n}$:

$$
I_{0}^{0}:=[0,1] \quad I_{2 k}^{n+1}:=\left[\min I_{k}^{n+1}, \frac{1}{3^{n+1}}+\min I_{k}^{n+1}\right] \quad I_{2 k+1}^{n+1}:=\left[\max I_{k}^{n+1}-\frac{1}{3^{n+1}}, \max I_{k}^{n+1}\right]
$$

Each union $J_{n}:=\bigcup_{k \in \mathbf{F i n} 2^{n}} I_{k}^{n}$ drops the middle thirds in the preceding interval sequence:

Later we'll define the Lebesgue measure as the unique σ-additive function $\boldsymbol{\lambda}: \mathcal{B}_{\mathbb{R}} \rightarrow[0, \infty]$ that assigns to each interval its length.

- Show that $\left\langle\boldsymbol{\lambda} J_{n}\right\rangle_{n}$ vanishes: $\lim _{n \rightarrow \infty} \boldsymbol{\lambda} J_{n}=0$, by calculating each number in the sequence.
- The Cantor set is the limit $\mathbb{G}:=\lim _{n} J_{n}$. Show that $\boldsymbol{\lambda} \mathbb{G}=0$.
- Find a bijection $\mathbb{G} \cong \mathbb{T}:=2^{\mathbb{N}}$ where $2:=$ Fin 2 .
- If you know some topology, equip $\mathbb{G} \rightarrow \mathbb{R}$ with the sub-space topology w.r.t. the open subsets of \mathbb{R} and $\mathbb{T}=\prod_{n \in \mathbb{N}} 2$ with the product topology w.r.t. the discrete topology on 2 . Find a homeomorphism $\mathbb{G} \cong \mathbb{T}$.

References

