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4 Aumann’s theorem

These exercises explore concepts derived from and around Aumann’s theorem. We will not
need intimate knowledge of the Borel hierarchy, but if you’re curious about it, the exercises
in Sec. A explore it in further detail through. This section is also an opportunity to learn
and practice some category theory.

Let X, Y be measurable spaces. An exponential of Y by X is a pair ⟨Y X , eval⟩ consisting
of a measurable space Y X and a measurable function eval ∶ Y X ×X → Y such that for every
measurable space Γ and measurable function f ∶ Γ×X → Y there exists a unique measurable
function λf ∶ Γ→ Y X satisfying:

Γ ×X

Y X ×X Y

Γ

Y X

λf (λf) × idX f

eval

=

This definition is a standard category-theoretic notion — we could replace ‘measurable
space’ by ‘object’ and ‘measurable function’ by ‘morphism’, as long as the category has
products with X.

◸4.1. Let I be a countable set and Y a measurable space. Show that we can give an
exponential of Y the discrete measurable space over I by the product Y ⌜I⌝ B∏i∈I X.

Where in your proof do you use I’s countability? ◿

◸4.2. Let ⟨Y X , eval⟩ be an exponential in Meas.

Find a bijection between the points in Y X and the measurable functions from X to Y ,
that is: ⌞Y X⌟ ≅Meas(X, Y )
Show that there is a σ-algebra on Meas(X, Y ) such that the set-theoretic evaluation
function eval ∶Meas(X, Y ) ×X

⟨f,x⟩↦f(x)
ÐÐÐÐÐÐ→ Y is measurable. ◿

◸4.3. Let I be a set.
Let ⟨Xi⟩i∈I be an I-indexed family of measurable spaces. Their coproduct ⟨∐i∈I Xi, ι−⟩

consists of the measurable space ∐i∈I Xi whose:

points are pairs of a tag from I and a point from Xi:

⌞∐
i∈I

Xi⌟B∐
i∈I
⌞Xi⌟B⋃

i∈I
{i} × ⌞Xi⌟

measurable subsets are unions ⋃i∈I {i} ×Ui of arbitrary I-indexed family of measurable
subsets Ui ∈ BXi .

and for each i ∈ I, ιi ∶Xi
x↦⟨i,x⟩
ÐÐÐÐ→∐i∈I Xi.

Prove:

U ⊆∐i∈I⌞Xi⌟ is measurable iff ι−1
i [U] is measurable for all i ∈ I.

The σ-algebra axioms hold in the coproduct, and every injection is measurable.
For every I-indexed family of measurable functions fi ∶ Xi → Y there is a unique
measurable function [fi]i∈I ∶∐i∈I Xi → Y such that:
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∐
i∈I

XiXi

Y

ιi

[fi]i∈Ifi

=

Find, and show the uniqueness of, the functorial action that makes the coproduct
construction into a functor ∐I ∶MeasI →Meas and all the coproduct injections natural
transformations ιi ∶ πi →∐I . ◿

◸4.4. We say that a space X is exponentiable when there is an exponential Y X for every
measurable space Y .

Let I be a set. Show that if, for every measurable space Γ, the following canonical map
is a measurable isomorphism: ∐i∈I Γ

[⟨idΓ,i⟩]i∈IÐÐÐÐÐÐ→ Γ × ⌜I⌝, then ⌜I⌝ is exponentiable, and
⟨∏i∈I Y , ⟨x⃗, i⟩↦ xi⟩ is the exponential ⟨Y ⌜I⌝, eval⟩ of Y by ⌜I⌝.
Show, for every countable set I, that ⌜I⌝ is exponentiable.
Show that if X is exponentiable, then for every I-indexed family of spaces, the canonical
map ∐i∈I X →X × ⌜I⌝ is a measurable isomorphism. ◿

Aumann’s theorem shows that Meas cannot have an exponential for R by R by inspecting
the full Borel hierarchy of the product. The next few exercises explore a more elementary
example for two measurable spaces that don’t have an exponential. I learned of this example
from Christine Tasson and Johannes Hölzl.

◸4.5. Consider the following measurable spaces:

⌜R⌝B ⟨R,℘R⟩: the discrete measurable space over the real numbers.
R̃: the measurable space over the real numbers with the countable-cocountable σ-algebra.
2B Fin 2B {trueB 1, falseB 0}: the discrete space with two points.

We’ll show that the exponential 2R̃ doesn’t exist in Meas.

Show that the diagonal {⟨r, r⟩ ∈ R × R∣r ∈ R} is a measurable subset of ∐r∈R R̃, and deduce
that ⌜R⌝ is not exponentiable.
(This fact doesn’t tell us which space Y doesn’t have the exponential Y ⌜R⌝.)
Show that if we have an exponential 2R̃, then the curried diagonal is a measurable
function λr.λs.[r = s] ∶ ⌜R⌝→ 2R̃. ◿

Aumann’s theorem is still worth the effort. The spaces in the previous exercise may seem
pathological, and we may falsely hope to exclude them by restricting to a subcategory of
‘nice’ spaces. Aumann’s theorem concerns indispensable spaces: 2 and R.

A frequent reaction to Aumann’s theorem is to hope that we can avoid it by replacing
the set of Borel measurable functions with a larger set of functions f ∶ R → R, such as the
Lebesgue-measurable functions, or the universally measurable functions. This is not the
case. Here’s an ‘easy’, but unsatisfying, result:

◸4.6. Let E be a measurable space consisting of a σ-algebra over a set of functions that
contains all the Borel measurable functions: Meas(R,R) ⊆ ⌞E⌟ ⊆ Set(R,R). Show that the
evaluation function eval ∶ E × R→ R is not measurable. ◿

This result is unsatisfying because the σ-algebra on R in the domain of eval is the Borel
one, so if we dare to include even one non-Borel-measurable function f ∶ R → R, then
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eval ⟨f,−⟩ ∶ R → R won’t be measurable. The convincing result is that even if we take S to
be the real numbers together with the much bigger σ-algebra of Lebesgue-measurable sets,
then we still don’t have any σ-algebra on the Borel-measurable functions that makes the
evaluation function eval ∶Meas(R,R)×S → R measurable. Doing so will require us to define
the Lebesgue measurable sets, which will take us deeper into classical measure theory. This
price is a hefty one to pay for just a dead-end, so I moved this material to Sec. B .If you’re
curious, jump right ahead.
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