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1. Introduction
Around the same time that Hyland and Ong [5, 6] and Abram-2

sky, Jagadeesan, and Malacaria [1, 2] gave a fully abstract game
semantics to PCF, O’Hearn and Riecke [14] also gave a fully ab-4

stract model combining domain-theoretic and relational techniques.
The games models give an intensional description of the semantics6

through a careful analysis of the interaction of a program with its
environment. Once the semantics characterises the appropriate in-8

tensional interaction, one quotients the model through the exten-
sional collapse process to get a fully abstract model. The O’Hearn-10

Riecke (OHR) model starts out with the usual extensional, domain-
theoretic model, and then uses logical relations to cut out junk from12

the model. Game semantics has since been extended to deal with a
wide spectrum of effects, whereas the O’Hearn-Riecke model re-14

mained relatively untouched, notably excepting Stark [16].
In the proposed talk, we will describe our ongoing work analysing16

the OHR model. We hope that, 25 years later, we can extend it
to account for other effects. This work is at an early stage. We18

hope to use the workshop to stimulate informal discussion about
directions for further questions, as well as learn folklore about20

results concerning the OHR model.
We structure our development from the modern perspective on22

a programming language with computational effects [10, 13]: a
category for values (pre-domains), a strong monad over it, with24

call-by-name semantics taking place in (a suitable subcategory of)
the Eilenberg-Moore category for this monad.26

2. Values/pre-domains
Before presenting the value part of the OHR model, we consider a28

simpler construction on the category Set of sets and functions.

Example 1 (Binary endo-relations). The category ERel has as30

objects pairs R = ⟨R, Ṙ⟩ consisting of a set R and a binary endo-
relation Ṙ ⊆ R2 (relation, for brevity). A morphism f ∶ R → S is a32

function f ∶ R → S preserving the relation:

⟨x1, x2⟩ ∈ Ṙ Ô⇒ ⟨f x1, f x2⟩ ∈ Ṡ34

The category ERel is the change-of-base of the subobject fibration
along the functor multiplying each set/function with itself. This36

category is cartesian closed, whose exponential is given as in Fig. 1.
Let R be a binary relation. We say that an element x ∈ R is38

R-invariant [15] when ⟨x,x⟩ ∈ Ṙ. We say that R is concrete
when every element in R is invariant, i.e., when R is reflexive.40

Let RRel ↪ ERel be the full subcategory consisting of the
concrete/reflexive relations. This embedding has both adjoints. The42

left adjoint C ∶ ERel→RRel simply adds the diagonal:

CRB ⟨R, Ṙ ∪ {⟨x,x⟩∣x ∈ R}⟩44

ERel ∶ SR = Set(R,S) RRel ∶ SR =RRel(R,S)
Both ∶ ˙SR = {⟨f1, f2⟩∣⟨x1, x2⟩ ∈ Ṙ⇒ ⟨f1 x1, f2 x2⟩ ∈ Ṡ}

Figure 1. Exponentials in ERel and RRel

The right adjoint H ∶ ERel → RRel restricts the relation to its
invariant elements, i.e., its reflexive centre:46

HRB ⟨{x ∈ R∣⟨x,x⟩ ∈ Ṙ}, Ṙ ∩ (HR)2⟩

We summarise this situation in a diagram (in CAT):48

BRelRRel

Set Set

Sub

C

H − cod

−2

�
�

Using the coreflection J ⊣ H , the following becomes a cartesian50

closed structure on RRel [3, Proposition 27.9]:

R × S BH(JR × JS) SR BH ((JS)JR) .52

Fig. 1 compares exponentials in ERel and RRel, where in gen-
eral RRel(R,S) ⊊ Set(R,S)54

The OHR model generalise this situation in two ways. The first
one is to move to Kripke relations of varying arity, and the second56

is to move to ω-chain-closed relations.

Example 2 (Kripke relations of varying arity). Fix a cardinal κ58

bounding the arity of the relations. For finitary relations, we use
the countable cardinal κ B ℵ0. Let Setκ be the (small) full60

subcategory of Set consisting of the hereditarily κ-small sets.
For each subcategory C ⊆ Setκ, consider the presheaf category62

Ĉ B [Cop,Set]. From the general theory of fibrations, Sub Ĉ
has a bi-cartesian closed structure that is strictly preserved by the64

subobject fibration cod ∶ Sub Ĉ→ Ĉ [9, e.g.], as on the right:

K̃K

Set ∏
C⊆Setκ

Ĉ

∏
C⊆Setκ

Sub Ĉ Sub Ĉ

Ĉ

C

H − cod∏
C

cod

X ↦ ⟨X−⟩C

�
�

66

Taking the (small) product in CAT, ranging over C, we have a bi-
fibration with the same properties (to the left of cod), for which we68

can take the change-of-base along the functor sending eachX to the
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diagonal presheaf i ∈ C ↦ Xi (further to the left). Concretely, the70

total category K̃ of abstract Kripke logical relations of varying arity
has as objects R = ⟨R, Ṙ−⟩ consisting of a set R together with, for72

every small subcategory C ⊆ Setκ, and every object w ∈ C, a
relation ṘCw ⊆ Rw, such that for all ρ ∶ w ← u in C, the function74

Xρ respects the relations, i.e.:

⟨ri⟩i∈w ∈ ṘCw Ô⇒ ⟨rρ j⟩j∈u ∈ ṘCu76

Morphisms f ∶ R → S are functions f ∶ R → S s.t.:

∀C,w ∈ C ∶ ⟨ri⟩i∈w ∈ ṘCw Ô⇒ ⟨f ri⟩i∈w ∈ ṠCw78

This situation generalises binary relations: choosing P to be the
one-object subcategory consisting of {0,1} with only the identity80

function on it, we get a forgetful functor U ∶ K̃ → ERel given
by R ↦ ⟨R,RP {0,1}⟩. Finally, we say that R ∈ K̃ is concrete82

when every r ∈ R is R-invariant: for all C, and w ∈ C, we have
∆wr B ⟨r⟩i∈w ∈ ṘCw. We take K to be the full subcategory of the84

concrete relations. The inclusion J ∶ K ↪ K̃ has a left adjoint C,
adding the diagonal to each relation, as well as a right adjoint H:86

HRB {r ∈ R∣∀C,w.∆wr ∈ ṘCw} ˙(HR)Cw B ṘCw ∩HRw

From the general theory of fibrations [9], K̃ is bi-cartesian closed,88

and as in Ex. 1, K is bi-cartesian closed. This bi-cartesian closed
structure is not preserved by J−.90

Recall that a pre-domain is a poset P = ⟨P ,≤⟩ where every
increasing sequence ⟨pn⟩n∈ω indexed by the ordinal ω (an ω-chain)92

has a least upper bound (lub), denoted ⋁n pn. Let ωCpo be the
category of pre-domains and Scott continuous functions: monotone94

functions preserving lubs of ω-chains. This category is bi-cartesian
closed and interprets values as usual in domain theory.96

Example 3 (ω-chain-closed relations). Let ωSub be the full-
subcategory of SubωCpo consisting of the ω-chain-closed sub-98

sets with order-reflecting inclusions as objects, and consider the
codomain bi-fibration cod ∶ ωSub → ωCpo. Generalising to100

Kripke structures, given a small subcategory C ⊆ Setκ, consider
the ωCpo-presheaf category Č B [C,ωCpo]. We take ωSub Č102

as a skeleton of the full subcategory of Sub Č with the component-
wise order-reflecting subobjects. From the theory of topological104

functor [3, Ch. 22–23], it is fibre-wise bi-cartesian closed, and the
fibration preserves the (total) bi-cartesian closed structure. We re-106

produce the situation from Ex. 2:

�K̃�K

ωCpo ∏
C⊆Setκ

Č

∏
C⊆Setκ

ωSub Č
C

H − ∏
C

cod

P ↦ ⟨P −⟩C

�
�

108

where �K is given by imposing the concreteness condition. Again,
the coreflecttion makes �K bi-cartesian closed.110

3. Computations/monads
Let L = ⟨L ∶ ωCpo→ ωCpo, return,⟫=⟩ be the lifting monad,112

adjoining to each ω-cpo a new least element �. Thanks to the
adjunction J ⊣ H , we can transform monads M over �K̃ to114

monads T over �K by setting T B HMJ . In particular, we will
transform monadic liftings of L.116

Example 4 (Hermida). Every monad can be lifted along a fibration
for logical relations by taking the direct image of the unit [4]. In118

our case, as the unit is injective, transforming this lifting along the
adjunction yields the identity monad on �K.120

Example 5 (free lifting). Taking the smallest lifting that is both
compatible with the image and contains the least element �, i.e.,122

making each lifting Ṁ an admissible subset of LX . This is a
special case of the free lifting [7]. We use this lifting.124

The Eilenberg-Moore category for T consists of the admissible
Kripke relations of varying arity, which is the crux of the OHR126

construction. To complete it, we note that in order to interpret a call-
by-name language with the natural numbers as base type, we need128

an appropriate T -algebra. OHR bakes this choice of algebra into
their category, but we want to separate it into the model structure.130

4. Definability
Let τ range over PCF types. In the final step in the construction, we132

use Katsumata’s [8] definability characterisation using ⊺⊺-lifting.
The ⊺⊺-lifting of L to K̃ characterises the elements (approximated134

by) definable elements. As the free lifting is contained in any lifting
containing �, and contains all the definable elements, we deduce136

that every element in T ⟦τ⟧ can be approximated by definable
elements, giving us the usual full-abstraction result. To use the ⊺⊺-138

lifting, we need to choose the cardinal κ to be large enough so that
each ⟦τ⟧ is κ-small. However, for PCF, OHR replace the definable140

elements by Milner’s finite definable approximations method [11].

5. Prospects142

We would like to transport this account to languages with arbitrary
effects. As a starting point, we will consider a model C for the144

programming language at hand, requiring it to be ωCpo-enriched.
We will then use the sub-scone [12] to reconstruct a generalisation:146

�K̃�K

C ∏
C⊆Setκ

Č

∏
C⊆Setκ

ωSub Č
C

H − ∏
C

cod

P ↦ ⟨C(1, P )−⟩C

�
�

further assuming C is sufficiently complete well-behaved for the148

adjoints to exist. As all of the constructions we have used, including
the free lifting, and definability via ⊺⊺-lifting, are valid in this150

situation, we hope to break new ground in this general setting.
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