A universal characterisation of locally determined ω -colimits

Ohad Kammar

<ohad.kammar@cl.cam.ac.uk>
Programming, Logic, and Semantics Group
University of Cambridge Computer Laboratory

Abstract—Characterising colimiting ω -cocones of projection pairs in terms of least upper bounds of their embeddings and projections is important to the solution of recursive domain equations. We present a universal characterisation of this local property as ω -cocontinuity of locally continuous functors. We present a straightforward proof using the enriched Yoneda embedding. The proof can be generalised to Cattani and Fiore's notion of locality for adjoint pairs.

15 MINUTE TALK OUTLINE

In the category theoretic solution of recursive domain equations [SP82], several technical results hinge upon the fact that the universality of ω -cocones of projection pairs can be characterised *locally* in terms of least upper bounds (lubs) of their embeddings and projections. To fix terminology and notation, consider an O-category K. Let K_{PR} be the O-category consisting of *projection pairs* $f:A\to B$ given by $f=\langle f^L:A\to B, f^R:B\to A\rangle$ where $f^R\circ f^L=\mathrm{id}_A$ and $f^L\circ f^R<\mathrm{id}_B$.

Definition ([SP82, Definition 8]). We say that a cocone $\langle C, c \rangle$ for an ω -chain of projection pairs is locally determined when $\sqcup_{n \in \mathbb{N}} c_n^L \circ c_n^R = \mathrm{id}_C$.

When all colimiting ω -cocones of projection pairs are locally determined, we say that the O-category has locally determined ω -colimits of projection pairs.

For example, the category $\omega \mathbf{CPO}$ of (not necessarily pointed) ω -cpos and continuous functions has locally determined ω -colimits.

The importance of these cocones lies in the fact that every locally determined cocone is colimiting. As any locally continuous functor $F:K\to L$ gives a continuous functor $F_{\mathrm{PR}}:K_{\mathrm{PR}}\to L_{\mathrm{PR}}$, given by $F_{\mathrm{PR}}f\coloneqq\left\langle Ff^L,Ff^R\right\rangle$, and locally determined ω -cocones are preserved by these functors. Our contribution is to show the converse:

Theorem. An ω -colimiting cocone of projection pairs is locally determined if and only if it is preserved by every locally continuous functor.

Let \widehat{K} be the O-category of O-presheaves, namely locally continuous functors and natural transformations from K^{op} to $\omega \mathbf{CPO}$. Let $\mathbf{y}: K \to \widehat{K}$ be the enriched Yoneda embedding $\mathbf{y}x \coloneqq \omega \mathbf{CPO}(-,x)$. Then, following from general principles [Kel82, Section 2.4], \mathbf{y} is locally continuous and fully faithful.

As is well-known, lubs and colimits in O-functor categories are given pointwise. The same argument shows that ω -colimits

of projection pairs are also given componentwise in *O*-functor categories. Therefore:

Proposition. If K, L are O-categories and L has locally determined ω -colimits of projection pairs, then so does the O-functor category L^K . In particular, every O-presheaf category \widehat{K} has locally determined ω -colimits.

We complete the proof of our theorem. Let $\langle C,c\rangle$ be any colimiting cocone that is preserved (in particular) by the locally continuous Yoneda embedding. As \widehat{K} has locally determined ω -colimits:

$$\mathbf{y}\left(\sqcup_n c_n^L \circ c_n^R\right) = \sqcup_n \mathbf{y}(c_n^L) \circ \mathbf{y}(c_n^R) = \mathbf{y}(\mathrm{id})$$

By the faithfulness of the Yoneda embedding we deduce that $\langle C,c\rangle$ is locally determined.

Corollary. An O-category has locally determined ω -colimits of projection pairs if and only if every locally continuous functor from it yields an ω -cocontinuous functor on projection pairs.

Much of the theory of recursive domain equations generalises to adjoint pairs $\langle f^L, f^R \rangle$ where $f^L \circ f^R \leq \operatorname{id}$ and $\operatorname{id} \leq f^R \circ f^L$. Cattani et al. [CFW98], [CF07] generalised locally determined cocones as follows:

Definition (cf. [CF07, Theorem 1.5]). We say that a cocone $\langle C, c \rangle$ for an ω -chain Δ of adjoint pairs is locally determined when $\sqcup_{n \in \mathbb{N}} c_n^L \circ c_n^R = \mathrm{id}_C$ and, for all $n \in \mathbb{N}$:

$$\sqcup_{m \geq n} \Delta^R_{n \leq m} \circ \Delta^L_{m \geq n} = c^R_n \circ c^L_n$$

When all colimiting ω -cocones of adjoint pairs are locally determined, we say that the O-category has locally determined ω -colimits of projection pairs.

As ω **CPO** has locally determined ω -colimits of adjoint pairs, almost identical proofs show the following:

Theorem. An ω -colimiting cocone of adjoint pairs is locally determined if and only if it is preserved by every locally continuous functor.

Corollary. An O-category has locally determined ω -colimits of adjoint pairs if and only if every locally continuous functor from it yields an ω -cocontinuous functor on adjoint pairs.

ACKNOWLEDGEMENTS

I am indebted to Alex Chadwick and Adam Ścibior for their participation in the recursive domain equations reading group during which I stumbled across this characterisation, and to Marcelo Fiore, Paul Levy, Gordon Plotkin, and Alex Simpson for interesting conversations and suggestions.

REFERENCES

- [CF07] Gian Luca Cattani and Marcelo P. Fiore. The bicategory-theoretic solution of recursive domain equations. *Electronic Notes in Theo*retical Computer Science, 172(0):203 – 222, 2007. Computation, Meaning, and Logic: Articles dedicated to Gordon Plotkin.
- [CFW98] G.L. Cattani, M. Fiore, and G. Winskel. A theory of recursive domains with applications to concurrency. In Logic in Computer Science, 1998. Proceedings. Thirteenth Annual IEEE Symposium on, pages 214–225, Jun 1998.
- [Kel82] Gregory M. Kelly. Basic concepts of enriched category theory. Theory and Applications of Categories, 1982. Reprinted in 2005.
- [SP82] M. Smyth and G. Plotkin. The category-theoretic solution of recursive domain equations. SIAM Journal on Computing, 11(4):761–783, 1982.