
Frex: dependently-typed algebraic simplification

GUILLAUME ALLAIS and EDWIN BRADY, University of St. Andrews

NATHAN CORBYN, University of Oxford

OHAD KAMMAR, University of Edinburgh

JEREMY YALLOP, University of Cambridge

We present an extensible, mathematically-structured algebraic simplification library design. We structure the

library using universal algebraic concepts: a free algebra; and a free extension — frex — of an algebra by a set

of variables. The library’s dependently-typed API guarantees simplification modules, even user-defined ones,

are terminating, sound, and complete with respect to a well-specified class of equations. Completeness offers

intangible benefits in practice — our main contribution is the novel design. Cleanly separating between the

interface and implementation of simplification modules provides two newmodularity axes. First, simplification

modules share thousands of lines of infrastructure code dealing with term-representation, pretty-printing, cer-

tification, and macros/reflection. Second, new simplification modules can reuse existing ones. We demonstrate

this design by developing simplification modules for monoid varieties: ordinary, commutative, and involutive.

We implemented this design in the new Idris2 dependently-typed programming language, and in Agda.

CCS Concepts: • Theory of computation → Type theory; Constructive mathematics; Equational
logic and rewriting; Automated reasoning; Categorical semantics; Algebraic semantics; • Software and
its engineering→ Formal software verification; Functional languages; •Mathematics of computing→
Solvers; • Computing methodologies→ Representation of polynomials.

Additional Key Words and Phrases: dependent types, frex, free extension, mathematically structured program-

ming, universal algebra, algebraic simplification, homomorphism, universal property

1 INTRODUCTION

Dependently-typed programming enables ever stronger program invariants. With some creativity,

users can maintain such invariants throughout the program either implicitly by computation or

canonically by adding or peeling constructors off of an inductive structure. Ideally, dependent-types

provide frictionless programming where invariants, computation, types, and terms line up just

right. The traditional textbook vector-append exemplifies this ideal. A vector is a list whose type is

indexed by a natural number maintaining its length. Vector append returns a result of length n + m,

the sum of its inputs’ respective lengths (n and m). When addition on natural numbers recurses

on the left argument, two crucial equations hold true by computation alone: 0+m = m and (1+n)+m =

1+(n+m). These equations are precisely the ones maintaining the vector append invariant in the base

and inductive cases. As a consequence the dependently typed code is frictionless — putting the

type signatures aside, vector append looks exactly like its loosely-specified list variant:

(++) : (xs, ys : List a) -> List a

[] ++ ys = ys

(x :: xs) ++ ys = x :: (xs ++ ys)

(++) : Vect n a -> Vect m a -> Vect (n+m) a

[] ++ ys = ys

(x :: xs) ++ ys = x :: (xs ++ ys)

However, this ideal frictionless style is often impossible for general-purpose dependently-typed

programming. Maintaining the invariant necessitates algebraic simplification and equational rea-

soning. For example, consider the binary merge function in Fig. 1, used in merge-sorting, which we

adapted from the standard library of the programming language Idris2 [10]. Its structure is identical

to its list counterpart, but it requires additional rewriting steps to maintain the vector-length

invariants. It combines the two input vectors, of lengths n and m, into a vector of length n + m. In

Draft, 2023
2022.

1

Draft, 2023 G. Allais, E. Brady, N. Corbyn, O. Kammar, and J. Yallop

mergeBy : (isLT: a -> a -> Bool) -> Vect n a -> Vect m a -> Vect (n + m) a 1

mergeBy _ [] ys = ys 2

mergeBy {n} _ xs [] = rewrite plusZeroRightNeutral n in xs 3

where plusZeroRightNeutral : (n : Nat) -> n + 0 = n 4

mergeBy {n = S n} {m = S m} isLT xs'@(x :: xs) ys'@(y :: ys) = 5

if isLT x y then x :: mergeBy isLT xs ys' 6

else rewrite sym (plusSuccRightSucc n m) in 7

y :: mergeBy isLT xs' ys 8

where plusSuccRightSucc : (n,m : Nat) -> S (n + m) = n + S m 9

Fig. 1. Merging vectors in Idris2 (from Data.Vect)

the first base case (line 3), the type-checker automatically normalises the index 0+m and accepts the

result m-vector ys. In both the remaining cases, we use rewriting to maintain the invariants:

Base step (lines 3–4): xs is an n-vector instead of the expected (n+0)-vector; and

Inductive step (lines 5-8): mergeBy on line 8 returns a ((1+n)+m)-vector instead of an (n+(1+m))-vector.

We use the two auxiliary lemmata (lines 4 and 9) from the standard library’s Data.Nat to discharge

these obligations, and the program checks. Index rearrangement doesn’t help: changing the result

type to Vect (m+n) a requires rewriting in lines 2 and 6 instead. Rewriting is unavoidable.

This essential need of rewriting is the reason that dependently-typed languages and their

ecosystems include algebraic simplifiers for common algebraic structures: commutative/ordinary

monoids, semi-rings, rings, etc. Users then only need to establish the structures’ axioms, such as

plusZeroRightNeutral, and call simplifiers to discharge derived equations like plusSuccRightSucc. In

dependently-typed interactive theorem provers, such as Agda, formalisation of algebraic proofs

and properties further necessitates algebraic simplifiers. These simplifiers range from tactic-based

solutions [6, for example] that simplify the algebraic terms in the typing goals, to simplifiers based

on proof-by-reflection that construct propositions that discharge the equation in question [23, e.g.].

We investigate extensible proof-by-reflection simplifier suites. Traditional reflection simplifiers

comprise of four parts. A data-structure whose values represent classes of equivalent terms, a

function that evaluates terms into these values, an effective procedure, i.e. an algorithm, deciding

equivalence of these values, and a proof that the result of this decision procedure reflects that the

original terms are equal. For example, take a 2-variable term over the additive integers (left), its

representative value (middle) representing the simplified form (right):
1

-6 + (x + 3) + (y + x)
evaluate/reflect↦−−−−−−−−−−−→ (-3, [2, 1]) : (Integer, Vect 2 Nat)

reify

↦−−−→ -3 + 2*x + 1*y

The representation pairs the sum of the concrete integers with a vector of coefficients for the two

variables, and one can prove that equality of representatives implies propositional equality.

We specify a uniform interface to such simplifiers. This uniform characterisation sets this ap-

proach apart from existing libraries. The suite shares infrastructure code, and the separation

between interface and implementation allows library designers and users to reuse existing simpli-

fiers to extend the library with new simplifiers. Simplifiers use many different data-structures, and

a uniform simplifier library needs enough abstraction to accommodate these differences.

Recently, Yallop et al. [39] observed that many data-structures for optimising and partially-

evaluating code involving static and dynamic fragments share a universal property: they implement

a representation of a free extension (frex) of an algebraic structure with a set of variables. We show

1
The terminology ‘reify’ and ‘reflect’ sometimes seems conflicting, but follows the relationship: syntax

reflect−−−−⇀↽−−−−
reify

semantics.

Reifying a program (semantics) gives a deeply-embedded representation (syntax) which one can manipulate. When we

manipulating two values, as we do here, reifying normal forms (semantics) gives deeply-embedded terms (syntax).

2

Frex: dependently-typed algebraic simplification Draft, 2023

that this observation applies to algebraic simplifiers — the data structures involved in reflection-

based simplifications also represent a frex. By recognising the theory and algebra for this frex, we

explicate the equations the simplifier is sound and complete with respect to.

Contribution. We investigate a new design for dependently-typed algebraic simplification suites.

Our design philosophy is to take the implementation beyond algebraic simplification, and teach it

algebra: signatures, theories and models, homomorphisms, and universal properties. The resulting

simplifiers are sound and complete by construction, and the library possesses several core software

engineering properties: extensibility, modularity, iterative development, and proof extraction to

avoid unnecessary dependencies, all realised completely generically. We implemented this design

in two dependently-typed languages, Agda and Idris2. We also investigated an additional layer

of reflection to ease usage. This layer requires substantial development effort and heuristics, and

provides real advantages in Agda and limited advantages in Idris2. We provide a preliminary

quantitative and qualitative usability evaluation, demonstrating the design is viable for interactive

development. We also evaluate the library’s extensibility, developing involutive monoids simplifiers.

Structure. We proceed as follows. Sec. 2–4 are of more introductory nature. Sec. 2 tours our pro-

posed library, Frex, and gives a feel to what it offers. Sec. 3 contains a brief Idris2 tutorial by

reviewing setoid-based equational reasoning. Sec. 4 introduces the relevant universal algebra con-

cepts (signatures, equations, algebras) and their representation in Frex. Sec. 5 presents Frex’s

core and its representations of free algebras and extensions, using our three monoid variations as

running examples. Sec. 6 explains the completeness guarantees of the library, and covers proof

extraction, simplification, pretty-printing and certification. Both sections are technically involved

and are aimed at library designers, and may be skimmed at first reading. Sec. 7 concerns a natural

question: can one use reflection/macros to invoke Frex automatically? The answer is a qualified

‘yes’, requiring much library-developer effort. Sec. 8 gives a quantitative and qualitative evaluation

of Frex. Sec. 9 discusses system design issues that Frex brought up during development. Secs. 10

and 11 conclude and discuss related and further work.

The theory behind Frex is well-established [39], and the main novelty and innovation is in its

implementation in a dependently-typed language. The proof of this kind of pudding is in the eating,

and we therefore include implementation-code demonstrating the programmatic realisation of

Frex’s algebraic concepts. We emphasise however that this manuscript is not a literate program:

Frex consists of 9,500 lines of Idris2 code. We include only the code we believe is important for the

gist of the ideas and concepts, and leave the implementation to speak for itself. Fig. 2 summarises

the core modules in this codebase and their relationship to this manuscript.

2 OVERVIEW

We propose Frex: a library design for algebraic simplifier suites. Frex takes advantage of the

expressive power of dependent type systems and structures the simplifiers around the notions

of free algebras and free extensions (frex). Each simplification module — frexlet — implements

the data-structures needed for algebraic simplification, and mechanised proofs that they satisfy

the specification of the free algebra or the free extension. In return, Frex provides the following

capabilities. To give a flavour of the code involved, we include full Idris2 code listings. The following

sections will explain all the syntax and concepts involved.

Generic, uniform infrastructure for algebraic reasoning. Frex provides common simplifier code, such

as algebras over a signature, equational axioms and presentations, validity, provability, etc. For

example, the monoid frexlet uses predefined axiom schemes for neutrality and associativity:

3

Draft, 2023 G. Allais, E. Brady, N. Corbyn, O. Kammar, and J. Yallop

• Frex (§4–§5.3): core definitions
• Signature (§4): operations & arities

• Algebra (§4,§5.1): algebraic structures
and terms, homomorphisms

• Presentation (§4): axioms, equational

theories

• Axiom (§4): common axiom schemes

• Model (§4): axiom-validating algebras

• Powers (§5.2): parameterised algebras

• Free (§4): simplification in all algebras

• Definition (§5.1): universal property

• Construction (§6): a non-effective

quotient construction used for extrac-

tion, printing, and certification

• ByFrex (§5.4): reuse a frex simplifier

to define a fral simplifier

• Linear (§6.1–§6.2): generic proof

simplification and printing

• Idris (§6): generic certification
• Coproduct (§5.3): universal property
• Frex (§5.1–§5.3): universal property,

reuse coproduct and fral simplifier to

define a frex simplifier

• Construction (§6): non-effective quo-

tient construction used for extrac-

tion, printing, and certification

• Lemma (§6): auxiliary representation

for auxiliary lemmata discharged by

fral simplifiers, printed, or certified

• Magic (§7): generic reflection code for

ergonomic invocation

• Frexlet.Monoid: modules concerning varieties of

monoids their simplifiers

• Theory (§4): signature, axioms, pretty printing

for the theory of ordinary monoids

• Notation (§4): shared infix notation (additive

and multiplicative) for monoid varieties

• Frex (Fig. 10): frex simplifier for monoids

• Free (§5.4): fral simplifier, reuses frex simplifier

• Nat (§4): additive and multiplicative monoid

structure of the natural numbers

• Pair: typeswith the cartesian product as a proof-
relevant monoid structure

• List: monoid structure of lists with concatena-

tion

• Commutative: commutative monoids modules

• Theory: commutativity axiom

• NatSemiLinear (§5.1): auxiliary definitions for
fral simplifier

• Coproduct (§5.3): coproduct of commutative

monoids

• Free (§5.1: fral simplifier

• Frex (§5.3): simplifier, reuses fral via coprod-

ucts

• Nat: addition and multiplication of naturals

• Involutive: modules concerning monoids

equipped with an involution

• Theory (§4): signature and axioms

• Frex (§5.5): simplifier, reuses monoid frex

• Free (§8.2): simplifier, reuses frex simplifier

• List (§4): involutive monoid structure of list

reversal

Fig. 2. Overview of the core Frex code-base and its relationship to this manuscript

MonoidTheory : Presentation

MonoidTheory = MkPresentation Theory.Signature

Theory.Axiom $ \case

LftNeutrality => lftNeutrality Neutral Product

RgtNeutrality => rgtNeutrality Neutral Product

Associativity => associativity Product

Frex provides notation suites such as Additive1, Additive2, or Multiplicative1, Multiplicative2, etc.

They provide an additive/multiplicative infix binary operator symbol ((.+.), (:+:), or (.*.), (:*:), etc.)

and an additive/multiplicative neutral constant (O1, O2, or I1, I2).2 For example, the following two

declarations let us use (O1 .+. (a .+. O1)) .+. O1 ~~ a to represent the equation 0 + (𝑎 + 0) + 0 = 𝑎:

4

Frex: dependently-typed algebraic simplification Draft, 2023

units : {monoid : Monoid} -> {a : U monoid} ->

(O1 .+. (a .+. O1)) .+. O1 ~~ a

units = solve 1 (FreeMonoidOver (cast $ Fin 1))

$ (O1 .+. (X 0 .+. O1)) .+. O1 =-= X 0

simplify : (n, m, k : Nat) ->

(n + 6) + (k + n) + (m + 2) = k + 2*n + m + 8

simplify n m k = solve 3 (Monoid.Commutative.Frex Nat.Additive)

$ (Dyn 0 .+. Sta 6) .+. (Dyn 1 .+. Dyn 0) .+. (Dyn 2 .+. Sta 2) =-=

Dyn 1 .+. ((the Nat 2) *. Dyn 0) .+. Dyn 2 .+. Sta 8

Fig. 3. Discharging equations with (a) free algebras (top) and (b) free extensions (bottom)

%hint

monoidNotation : (a : Monoid) -> NotationHint a Additive1

monoidNotation a = a.notationHint Additive1 a.Additive1

(~~) : (monoid : Monoid) => (lhs, rhs : U monoid) -> Type

(~~) = monoid.equivalence.relation
Other languages can use similar idiomatic mechanisms like unification hints [4], first-class type-

classes [36], or modules in Agda, to produce more ergonomic interfaces to the generic infrastructure.

Soundness and completeness. Like other algebraic simplifiers, Frex soundly discharges algebraic

equations. Unlike other simplifiers, it supports two kinds of simplifiers, based on two related

concepts from universal algebra:

Free algebra (fral) simplifiers discharge equations that hold in all algebras, as in Fig. 3a. Users call

the simplifier using solve, passing as arguments the number of free variables (1), the relevant fral

simplifier over the free variables (FreeMonoidOver), and the equation to discharge with simplification.

The smart constructor X gives the term representing a variable.

Free extension (frex) simplifiers additionally evaluate closed sub-terms in concrete algebras (Fig. 3).

Like the free algebra simplifier, we pass the number of free variables and the relevant frex simplifier.

But unlike the fral and other existing simplifiers, here the simplification may contain both free

variables, labelled Dynamic, and statically-known, concrete values, labelled Static, following the

terminology of Yallop et al. [39]. Using a different syntax than the fral’s X avoids some confusing

ambiguity-resolution error-messaged in Idris2 in case of a type-error. The frex simplifiers group

these concrete values together, and the type-checker can evaluate these concrete values.

So while the fral simplifier can only prove the equations:

(𝑥0 + 6) + (𝑥1 + 𝑥0 + (𝑥2 + 2) = (6 + 2) + (2𝑥0 + 𝑥1 + 𝑥0 + 𝑥2)
(𝑥1 + 2𝑥0) + 𝑥2 + 8 = 8 + (2𝑥0 + 𝑥1 + 𝑥0 + 𝑥2)

the frex simplifier is aware of evaluation, and can further prove all 4 terms equal.

By expressing the universal property of the fral and frex as a dependent-type, Frex guarantees

that well-typed simplifiers are complete, and will discharge all provable equations.

Extensibility. Frex exports the universal properties of the fral and frex, and library users may

implement their own frexlets. Since the type-system enforces these universal properties, user-

defined frexlets are also sound and complete. To test this extensibility, we implemented a new

frexlet for involutive monoids, monoids with an additional involutive unary operator that reverses

the monoid multiplication. For example, this simplifier can discharge this equation:

(reverse (reverse ys ++ ([x3, x2, x1] ++ reverse xs))) = (xs ++ [x1, x2, x3] ++ ys)

It took 1 experienced developer 2 weeks to develop.

2
The familiar additive notation (+) and 0 clashes too much with Idris2’s current numeric tower and overloading mechanisms.

5

Draft, 2023 G. Allais, E. Brady, N. Corbyn, O. Kammar, and J. Yallop

Modular and iterative development. Frexlets share the core Frex infrastructure, so frexlet developers

can reuse and combine existing frexlets. For example, the involutive monoids frexlet uses the free

extension of the underlying monoid with two copies of the set of variables:

MonoidFrex (cast a) (cast Bool `Pair` s)

(The casts forget the involution and construct a setoid of Booleans, respectively.) The Boolean tag

tracks whether the variable is involuted or not. By appealing to its universal property, the frexlet

designers avoid the low-level calculations involved in constructing and manipulating normal forms.

We can also use frals to construct frexes and vice versa. For example, the following ByFrex

construct constructs fral simplifiers from a frex simplifier for the initial algebra:

ByFrex : (initial : Free pres (cast Void)) ->

Frex initial.Data.Model s -> Free pres s

We can use this construction to get the monoid fral:

FreeMonoidOver : (s : Setoid) -> Free MonoidTheory s

FreeMonoidOver s = ByFrex FreeMonoidVoid

(MonoidFrex TrivialMonoid s)
We can rapidly develop new frexlets with combinators such as ByFrex, and in the future iteratively

improve them by fusing abstractions and streamlining data-structures.

Proof extraction. As we’ll see later, Frex formalises the universal property with respect to setoid
algebras, and not just algebras that satisfy the equations propositionally. Using setoids complicates

the core of Frex, generalising the definitions and proofs to work with the additional equivalence

relations. In return we can use the same core interface to extract the equality proofs simplifiers com-

pute. The appendix (Fig. 16) shows an automatically extracted proof for the equation (𝑥•3)•2 = 5•𝑥
in the additive monoid structure (Nat, 0, (+)), invoked as follows:

extractedProof : ((Dyn' 0 :+: Sta' 3) :+: Sta' 2 ~~ Sta' 5 :+: Dyn' 0) {vars = Fin 1}

extractedProof

= Frex.prove _ (Monoid.Commutative.Frex Nat.Additive)

$ ((Dyn 0 :+: Sta 3) :+: Sta 2 =-= Sta 5 :+: Dyn 0)

The synthesised proof has 24 steps. While longer than necessary, it is extracted completely generi-

cally through recourse to the frex universal property. Concretely, we implement the functions solve

and prove for both the fral and the frex by calling the same function with different parameters: we

call freeSolve to implement fral simplification and proof synthesis, and we call frexify for the frex

counterparts. We provide extraction to unicode and LATEX.

Certification. Wealso provide a genericmechanism to compile the extracted deeply embedded proofs

into Idris2 modules that are independent of Frex. These modules can be type-checked separately

and provide certificates. The appendix (Fig. 17) shows an automatically extracted certificate for

the equation 0 + (𝑥 + 0) + 0 = 𝑥 in a generic monoid m = (U m, O1, (.+.)). We produce the certificate

by invoking the function idris : List (String, Lemma MonoidTheory) -> String, which takes a list of

named lemmata and generates this module. To make the generated code more readable, concrete

frexlets such as monoids specialise the generic certification mechanism to support infix notation

like addition or multiplication.

3 SETOIDS AND EQUATIONAL REASONING: AN IDRIS2 TUTORIAL

To introduce the relevant features of Idris2, we review some relevant standard constructions in

dependent types [19, 20, e.g.]. A setoid X = (U X, (~~)) consists of a set U X and an equivalence relation

(~~). We represent equivalence relations and setoids in Idris2 with records in Fig. 4a. Idris2 records

are syntactic sugar for a single-constructor data declaration and automatically generated field

6

Frex: dependently-typed algebraic simplification Draft, 2023

record Equivalence (A : Type) where

constructor MkEquivalence

0 relation: Rel A

reflexive : (x : A) -> relation x x

symmetric : (x, y : A) -> relation x y -> relation y x

transitive: (x, y, z : A) -> relation x y -> relation y z

-> relation x z

record Setoid where

constructor MkSetoid

0 U : Type

equivalence : Equivalence U

data Setoid : Type where

MkSetoid : (0 U : Type) ->

(equivalence

: Equivalence U) -> Setoid

0

U : Setoid -> Type

U (MkSetoid x _) = x

equivalence : (s : Setoid) ->

Equivalence (U s)

equivalence (MkSetoid _ y) = y

Fig. 4. (a) Equivalence relations and setoids as records and (b) example desugaring into a GADT and projections

projections, as in Fig. 4b. Idris2 also automatically generates the post-fix projections for each field

using a dotted notation, writing b.equivalence.relation for the nested projection. The quantity
annotation 0 on the field U means that the compiler will erase these fields at runtime, but such fields

may be used in types. Quantities are an integral innovation in Idris2’s type theory, and also include

a linear quantity annotation, which we do not use here. If you’re reading this manuscript in colour,

our listings include semantic highlighting, designating the semantic class of each lexeme: data

constructor, type constructor, defined function or value, and variable in a binding/bound occurence.

A setoid homomorphism f : X ~> Y is a relation-preserving function between the underlying sets:

SetoidHomomorphism : (a,b : Setoid)

-> (f : U a -> U b) -> Type

SetoidHomomorphism a b f

= (x,y : U a) -> a.equivalence.relation x y

record (~>) (A,B : Setoid) where

constructor MkSetoidHomomorphism

H : U A -> U B

homomorphic : SetoidHomomorphism A B H
Setoids and their homomorphisms form a common technique to complete an intensional type

theory. For example, Fig. 5a defines the quotient of a type by a function , taking two elements to be

equal when their images under the function q are equal, and the setoid of homomorphisms between

two setoids together with extensional equality. This example also demonstrates Idris2’s local

definitions (lines 19-21), possibly with quantities, named-argument function calls (lines 8–15, e.g.),

and anonymous functions (lines 9–10, e.g.). Idris2, like Haskell, implicitly quantifies (with quantity

0) over unbound variables in type-declarations such as the type a in Quotient. The underscores

indicate that the elaborator can fill-in the blanks uniquely using unification.

This technique is affectionately dubbed ‘setoid hell’, since we often need to prove that all our

functions are setoid homomorphisms. Following Hu and Carette [19], we manage setoid hell by

structuring code categorically, organising results into homomorphisms between appropriate setoids.

E.g., Fig. 5b presents a setoid over n-length vectors over a given setoid. The vector functorial action

VectMap has a setoid homomorphism structure between the two setoids of homomorphisms: (1)

map f.H is a homomorphism (lines 19–25), and that (2) it maps extensionally equal homomorphisms

to extensionally equal homomorphisms (26–30). These proofs use Idris2’s equational reasoning

notation for setoids (lines 20–25 and 27–30), a deeply-embedded chain of equational steps. Each

step ~~ appeals to transitivity, and requires a justification. The last two dots in the thought bubble

operator (...) modify the reason: plain usage (line 23) appeals to a setoid equivalence; an equals in

the middle dot, e.g. (.=.), appeals to reflexivity via propositional equality (lines 22, 25, 28, 30); and

a comparison symbol in the end, e.g. (.=<), appeals to symmetry (lines 25, 30).

7

Draft, 2023 G. Allais, E. Brady, N. Corbyn, O. Kammar, and J. Yallop

1 Quotient : (b : Setoid) -> (a -> U b)

2 -> Setoid

3 Quotient b q = MkSetoid a $

4 let 0 relation : a -> a -> Type

5 relation x y =

6 b.equivalence.relation (q x) (q y)

7 in MkEquivalence

8 { relation = relation

9 , reflexive = \x =>

10 b.equivalence.reflexive (q x)

11 , symmetric = \x,y =>

12 b.equivalence.symmetric (q x) (q y)

13 , transitive = \x,y,z =>

14 b.equivalence.transitive

15 (q x) (q y) (q z)

16 }

17 (~~>) : (a,b : Setoid) -> Setoid

18 (~~>) a b = MkSetoid (a ~> b) $

19 let 0 relation : (f, g : a ~> b) -> Type

20 relation f g = (x : U a) ->

21 b.equivalence.relation (f.H x) (g.H x)

22 in MkEquivalence

23 { relation

24 , reflexive = \f,v =>

25 b.equivalence.reflexive (f.H v)

26 , symmetric = \f,g,prf,w =>

27 b.equivalence.symmetric _ _ (prf w)

28 , transitive = \f,g,h,f_eq_g, g_eq_h, q =>

29 b.equivalence.transitive _ _ _

30 (f_eq_g q) (g_eq_h q)

31 }

0 (.VectEquality) : (a : Setoid) -> Rel (Vect n (U a)) 1

a.VectEquality xs ys = (i : Fin n) -> 2

a.equivalence.relation (index i xs) (index i ys) 3

VectSetoid : (n : Nat) -> (a : Setoid) -> Setoid 3

VectSetoid n a = MkSetoid (Vect n (U a)) 4

$ MkEquivalence 5

{ relation = (.VectEquality) a 6

, reflexive = \xs , i => 7

a.equivalence.reflexive _ 8

, symmetric = \xs,ys, prf , i => 9

a.equivalence.symmetric _ _ (prf i) 10

, transitive = \xs, ys, zs, prf1, prf2, i => 11

a.equivalence.transitive _ _ _ (prf1 i) (prf2 i) 12

} 13

VectMap : {a, b : Setoid} -> (a ~~> b) ~> 14

(VectSetoid n a ~~> VectSetoid n b) 15

VectMap = MkSetoidHomomorphism 16

(\f => MkSetoidHomomorphism 17

(\xs => map f.H xs) 18

$ \xs, ys, prf, i => CalcWith b $ 19

|~ index i (map f.H xs) 20

~~ f.H (index i xs) 21

.=.(indexNaturality _ _ _) 22

~~ f.H (index i ys) ...(f.homomorphic _ _ $ prf i) 23

~~ index i (map f.H ys) 24

.=<(indexNaturality _ _ _)) 25

$ \f,g,prf,xs,i => CalcWith b $ 26

|~ index i (map f.H xs) 27

~~ f.H (index i xs) .=.(indexNaturality _ _ _) 28

~~ g.H (index i xs) ...(prf _) 29

~~ index i (map g.H xs) .=<(indexNaturality _ _ _) 30

Fig. 5. (a) Quotient, function-space, and (b) vector setoids (top) and a higher-order homomorphism (bottom)

4 UNIVERSAL ALGEBRA IN FREX

To define an interface to algebraic simplifiers, we first specify and represent algebraic structures.

A signature Σ = (Op Σ, arity) consists of a set Op Σ of operation symbols and an assignment arity :

Op Σ → Nat of a natural number to each operation symbol called its arity. For example, the additive

signature often used for commutative monoids has two operation symbols: OpAdditive := {(+), 0},
with arities 2 and 0, respectively. It’s standard to write both symbols and arities more succinctly as

OpMultiplicative := {(·) : 2, 1 : 0}, taking as example the multiplicative signature often used for

ordinary monoids. In Frex, we implement signatures and their operations as follows:

record Signature where

constructor MkSignature

OpWithArity : Nat -> Type

record Op (sig : Signature) where

constructor MkOp

{arity : Nat}

snd : sig.OpWithArity arity

8

Frex: dependently-typed algebraic simplification Draft, 2023

(^) : Type -> Nat -> Type

(^) a n = Vect n a

algebraOver : (sig : Signature)

-> (a : Type) -> Type

sig `algebraOver` a =

(f : Op sig) -> a ^ (arity f) -> a

record Algebra (Sig : Signature) where

constructor MakeAlgebra

0 U : Type

Semantics : Sig `algebraOver` U

CongruenceWRT : {n : Nat} -> (a : Setoid) ->

(f : (U a) ^ n -> U a) -> Type

CongruenceWRT a f = SetoidHomomorphism (VectSetoid n a) a f

record SetoidAlgebra (Sig : Signature) where

constructor MkSetoidAlgebra

algebra : Algebra Sig

equivalence : Equivalence (U algebra)

congruence : (f : Op Sig) ->

(MkSetoid (U algebra) equivalence)

`CongruenceWRT` (algebra.Sem f)

Fig. 6. algebras and setoid algebras in Frex

The implementation uses Idris2’s implicit record field for arity. Users define concrete instances

of Signature, such as the signature MkSignature Operation for monoids, by defining an injective type

family as follows for the indexed field OpWithArity:
data Operation : Nat -> Type where

Neutral : Operation 0

Product : Operation 2
Injectivity avoids projecting the arity in concrete cases, where unification extracts it automatically.

Signatures determine an algebraic language, and an algebra is its semantic model. An algebra
A = (U A, A ⎜−⨆︁) for a signature Σ consists of a set U A called the carrier and an assignment of a

function A ⎜𝑓 ⨆︁ : (U A)𝑛 → U A for every operation symbol 𝑓 : 𝑛 in Σ. In Frex, we replace (U A)𝑛 with

vectors (Fig. 6). As in Haskell, back-ticks turn any name into an infix operator. For example, the

additive natural numbers form an algebra for the monoid signature as follows:

Additive : Algebra Monoid.Theory.Signature

Additive = MkAlgebra {U = Nat, Sem = \case

Neutral => 0

Product => plus}

The code uses the smart constructor MkAlgebra that uncurries the argument operations before passing

them to MakeAlgebra. The \case keyword is an anonymous function that immediately pattern-matches

its argument. Setoid algebras further require an equivalence relation that forms a congruence

w.r.t. the operations (Fig. 6).

The language determined by a signature consists of terms and equations in context. Given a set

X of variables, the Σ-terms over X are given inductively as either a variable in X or an application

𝑓 (𝑡1, . . . , 𝑡𝑛) of an operation symbol 𝑓 : 𝑛 from Σ to 𝑛 terms over X, as follows:
data Term : (0 sig : Signature) -> Type -> Type where

||| A variable with the given index

Done : {0 sig : Signature} -> a -> Term sig a

||| An operator, applied to a vector of sub-terms

Call : {0 sig : Signature} -> (f : Op sig) ->

Vect (arity f) (Term sig a) -> Term sig a
Free : (0 sig : Signature) -> (0 x : Type) -> Algebra sig

Free sig x = MakeAlgebra (Term sig x) Call
Terms form an algebra, the free algebra, with symbols denoting term formers.

An equation X ⊢ 𝑡 = 𝑠 consists of a set X of variables and two terms in context X. Frex only needs

equations in a finite context, and we call its cardinality the support of the equation. A presentation
T = (ΣT ,T .Axiom) consists of a signature ΣT and a set T .Axiom of ΣT-equations in context:

9

Draft, 2023 G. Allais, E. Brady, N. Corbyn, O. Kammar, and J. Yallop

data Axiom

= LftNeutrality

| RgtNeutrality

| Associativity

MonoidTheory : Presentation

MonoidTheory = MkPresentation Theory.Signature

Theory.Axiom $ \case

LftNeutrality => lftNeutrality Neutral Product

RgtNeutrality => rgtNeutrality Neutral Product

Associativity => associativity Product

MonoidStructure : Type

MonoidStructure =

SetoidAlgebra Signature

Monoid : Type

Monoid = Model MonoidTheory

Fig. 7. Axiomatising monoids in Frex

models : {sig : Signature} ->

(a : SetoidAlgebra sig) -> (eq : Equation sig) ->

(env : Fin eq.support -> U a.algebra) -> Type

models a eq env = a.equivalence.relation

(a.Sem eq.lhs env)

(a.Sem eq.rhs env)

(=|) : {sig : Signature} -> (eq : Equation sig) ->

(a : SetoidAlgebra sig

** Fin eq.support -> U a.algebra) -> Type

eq =| (a ** env) = models a eq env

ValidatesEquation : (eq : Equation sig) ->

(a : SetoidAlgebra sig) -> Type

ValidatesEquation eq a =

(env : Fin eq.support -> U a.algebra) ->

eq =| (a ** env)

Validates : (pres : Presentation) ->

(a : SetoidAlgebra pres.signature) -> Type

Validates pres a = (ax : pres.Axiom) ->

ValidatesEquation (pres.axiom ax) a

Fig. 8. Equational validity in an algebra

record Equation

(Sig : Signature) where

constructor MkEq

support : Nat

lhs, rhs :

Term Sig (Fin support)

record Presentation where

constructor MkPresentation

signature : Signature

0 Axiom : Type

axiom : (ax : Axiom) ->

Equation signature

associativity : {sig : Signature} 1

-> EqSpec sig [2] 2

associativity product = 3

let (+) = call product in 4

MkEquation 3 $ X 0 + (X 1 + X 2) 5

=-= (X 0 + X 1) + X 2 6

For example, the monoid presentation Monoid in Fig. 7 has three axioms: left and right neutrality,

and associativity. Frex defines a generic collection of axiom schemes (above, right). Its type

EqSpec sig [2] (lines 1–2) states that it’s a scheme involving a single binary operation, and its

declaration involves 3 variables (MkEquation 3 in line 5).

A Σ-equation X ⊢ 𝑡 = 𝑠 is valid in a Σ-algebra A when the A-interpretations of both sides are

extensionally equal. Frex’s representation of this statement is in Fig. 8. We use Idris2’s depen-

dent pairing construct to pair an algebra with an environment in the standard entailment syntax

eq =| (a ** env). The following code validates the monoid axioms for our running example:

IsMonoid : Validates MonoidTheory NatAdditive

IsMonoid LftNeutrality env = Refl

IsMonoid RgtNeutrality env = plusZeroRightNeutral _

IsMonoid Associativity env = plusAssociative _ _ _

A T -model A is a ΣT-algebra A validating all T -equations:

record Model (Pres : Presentation) where

constructor MkModel

Algebra : SetoidAlgebra (Pres).signature

Validate : Validates Pres Algebra
We can now define a monoid to be aMonoid-model, as in Fig. 7. Putting everything together, we

validate the monoid structure of multiplication as follows:

10

Frex: dependently-typed algebraic simplification Draft, 2023

ListInvMonoid : {0 a : Type} -> InvolutiveMonoid

ListInvMonoid = MkModel

{ Algebra = cast $ MkAlgebra

{sig = Monoid.Involutive.Theory.Signature}

{ U = List a -- Carrier

, Sem = \case -- Operations

Mono monoidOp => case monoidOp of -- Inherited from monoids

Neutral => []

Product => (++)

Involution => reverse

}

, Validate = \case -- Validate equations

Mon LftNeutrality => \env => Refl -- Directly, or

Mon RgtNeutrality => \env => appendNilRightNeutral _ -- use existing standard

Mon Associativity => \env => appendAssociative _ _ _ -- library functions

Involutivity => \env => reverseInvolutive _

Antidistributivity => \env => sym (revAppend _ _)

}

Fig. 9. The involutive monoids of list reversal

Multiplicative : Monoid 1

Multiplicative = MkModel 2

{ Algebra = cast {from = Algebra Signature} $ 3

MkAlgebra {U = Nat, Sem = \case Neutral => 1 4

Product => mult} 5

, Validate = \case 6

LftNeutrality => \env => plusZeroRightNeutral _ 7

RgtNeutrality => \env => multOneRightNeutral _ 8

Associativity => \env => multAssociative _ _ _ 9

} 10

Line 3 converts the constructed algebra into a setoid algebra, and lines 10–12 use results about the

natural numbers from Idris2’s standard library.

Using Frex

While the definitions in this section are layered and structured, they generalise familiar situations

concerning monoids and groups that are usually covered by computer science curricula. We hope

users can pick up a working knowledge by modifying such examples.

Unless they’re already working abstractly with an algebraic structure, we expect that in practice

users start by recognising their concrete algebra validates the axioms of an existing frexlet they

want to use. As a concrete running example, we’ll take computations with lists that also involve the

reverse function. These form an involutive monoid: a monoid A equipped with a unary involution
operator 𝑥 ↦→ 𝑥 : UA → UA satisfying two axioms x = x and xy = y x. We then equip our type of

interest, lists, with an involutive model structure as in Fig. 9. We can use this algebra and the

involutive monoid to discharge equations containing list variables and concrete lists:

1 lemma : {x,y : List a} -> (i,j,k : a)

2 -> (reverse ([j, i] ++ reverse y ++ ([] ++ reverse x))) ++ [k]

3 = x ++ y ++ [i, j, k]

11

Draft, 2023 G. Allais, E. Brady, N. Corbyn, O. Kammar, and J. Yallop

free algebra free extension

ordinary variable lists 𝑦𝑥𝑥𝑦𝑥 alternating lists

(
1 3

0 2

)
𝑦

(
0 1

1 0

)
𝑦

(
1 0

0 1

)
monoid inM2×2 (Nat) [𝑦]
commutative origin-intercepting 𝑎1𝑥1+ . . .+𝑎𝑛𝑥𝑛 linear polynomials 𝑐+𝑎1𝑥1+ . . .+𝑎𝑛𝑥𝑛
monoid linear polynomials (𝑎𝑖 : Nat) in A[𝑥1, . . . , 𝑥𝑛] (𝑎𝑖 : Nat, 𝑐 : A)

involutive lists over 𝑦𝑥𝑥𝑥𝑦𝑥 alternating lists ""𝑥"hello"𝑦"olleh"𝑥""

monoid ordinary and involuted variables with tagged variables in String[𝑥,𝑦]

Fig. 10. Frexlets for varieties of monoids

4 lemma i j k = solve 2 (Involutive.Frex.Frex ListInvMonoid) $

5 ((Sta [j, i] .*. (Dyn 1) .inv .*. (I1 .*. (Dyn 0) .inv)) .inv) .*. Sta [k]

6 =-= Dyn 0 .*. (Dyn 1 .*. Sta [i, j, k])

The solve function takes as argument the number of variables (n=2 on line 2) in the algebraic term

to simplify, and an algebraic simplifier from the frexlet (Involutive.Frex.Frex on line 4). The final

argument is a pair of terms with n=2 variables (Dyn 0 and Dyn 1) and concrete values from the algebra.

By importing notation modules the frexlet provides, we can use infix multiplicative notation such

as (.*.). The type-checker then infers the terms to substitute for each variable.

In this example, we used solve to define a stand-alone lemma, but we may also call solve directly

from a chain of equational reasoning steps. When we extract lemmas, we often want to prove them

more abstractly, for all involutive monoids. In that case we use a fral:

1 ExampleFral : {a : InvolutiveMonoid} -> (x,y,z : U a)

2 -> let %hint notation : ? -- Open notation hints for the monoid

3 notation = a.Notation1 -- for infix operator (.*.) and

4 in a.rel -- postfix operator (.inv)

5 (x .*. y.inv .*. z).inv

6 (z.inv .*. y .*. x.inv)

7 ExampleFral x y z =

8 let %hint notation : ? -- ditto, but for terms

9 notation = Involutive.Notation.multiplicative1

10 in solve 3 (Involutive.Free.FreeInvolutiveMonoidOver 3) $

11 (X 0 .*. (X 1).inv .*. X 2).inv =-= (X 2).inv .*. X 1 .*. (X 0).inv

Lines 2–3 overloads the infix and postfix notation using the frexlet’s built-in notation suites. The

solve function takes the number of free variables and a corresponding fral simplifier (line 10), as

well as the two terms representing the equation of interest.

5 FREE EXTENSIONS AND ALGEBRAS

Before delving into the details of Frex’s core, Fig. 10 summarises our frexlet representations using

examples for elements in the fral and the frex for ordinary, commutative, and involutive monoids.

The elements in the free monoid are lists of the variables appearing in the term, which are

sometimes known as reduced words in the context of freely generated groups. The elements in the

free extension of a monoid are lists alternating between concrete elements in the given monoid,

and freely-adjoined variables. The figure shows an element in the free extension by 1 variable (𝑦)

of the multiplicative monoid of 2 × 2 matrices with natural-number components. The matrix 𝑦 is

unknown, or Dynamically known, and so its occurrence separates the elements in the list.

Further assuming commutativity equates more terms, resulting in the representation of the free

commutative monoid over n variables as an n-vector of coefficients, representing a linear polynomial.

12

Frex: dependently-typed algebraic simplification Draft, 2023

Preserves : {sig : Signature}

-> (a, b : SetoidAlgebra sig)

-> (h : U a -> U b)

-> (f : Op sig) -> Type

Preserves {sig} a b h f

= (xs : Vect (arity f) (U a))

-> b.equivalence.relation

(h $ a.Sem f xs)

(b.Sem f (map h xs))

Homomorphism : {sig : Signature}

-> (a, b : SetoidAlgebra sig) -> (h : U a -> U b) -> Type

Homomorphism a b h = (f : Op sig) -> Preserves a b h f

record (~>) {Sig : Signature} (a, b : SetoidAlgebra Sig) where

constructor MkSetoidHomomorphism

H : cast {to = Setoid} a ~> cast b

preserves : Homomorphism a b (.H H)

Fig. 11. Setoid algebra homomorphisms in Frex

Freely extending a commutative monoid A by n variables can be represented by a concrete coefficient

𝑐 : A together with an n-vector of coefficients, representing a linear polynomial over A.

If we instead include an involutive operation 𝑥 ↦→ 𝑥 over the monoid, we get reduced words

and alternating lists whose letters may be tagged as involuted. The figure demonstrates the free

extension of the monoid structure of String concatenation, with string reversal for the involution.

These examples feel similar, using a notion of a polynomial with coefficients taken from a

concrete algebra. The underlying representations are natural, and appear in existing algebraic

simplifiers. Frex innovates by exploiting the formal commonality of these examples — the universal

property of free algebras and free extensions — when designing simplifier libraries.

5.1 Universal properties

In order to talk about ‘free’ algebras, extensions, and universal properties in general, we need

categories of algebras, not just types of them. We then proceed to define the appropriate structures

for the fral and the frex and its structure-preserving functions. Then by cranking a handle, we

get the definition of the free such structure. The creativity that goes into designing simplifiers

becomes more methodological and principled when recast as designing an appropriate fral or frex.

The universal property provides a checklist that organises the simplification code.

A homomorphism ℎ : A → B of Σ-algebras is a semantics-preserving function Hℎ : U A → U B

between their carriers. Explicitly, for all operation symbols 𝑓 : 𝑛 in Σ and 𝑎1, . . . , 𝑎𝑛 in U A, we

have: Hℎ(A ⎜𝑓 ⨆︁(𝑎1, . . . , 𝑎𝑛)) = B ⎜𝑓 ⨆︁(Hℎ 𝑎1, . . . , Hℎ 𝑎𝑛)). Frex extends this notion to setoid algebras

in Fig. 11, by requiring the underlying function to be a setoid homomorphism between the corre-

sponding setoids. The code uses an appropriate cast function that assembles these setoids from

the data in each setoid algebra. Each a : Algebra sig defines a homomorphic extension operator

a.Sem : Term sig x -> (x -> U a) -> U a by structural induction over the term (i.e., folding). For ex-

ample, (Nat.Additive).Sem (X 0.+.O1.+.X 1) (\case {0=>5; 1=>7}) evaluates to 5+0+7 in the Additive Nat

algebra. The free algebra construction, together with the embedding of variables into terms, forms

the left adjoint to the forgetful functor from algebras to sets by the uniqueness of this homomorphic

extension. Being left-ajoint to the forgetful functor is the category-theoretic definition of the free

algebra, justifying the terminology.

Given a presentation T , a T -algebra a = (a.Model, Env a) over a set X consists of a T -algebra

a.Model and a function Env a : X → Ua.Model. A morphism h : a → b of such algebras is a T -algebra

13

Draft, 2023 G. Allais, E. Brady, N. Corbyn, O. Kammar, and J. Yallop

record ModelOver

(Pres : Presentation)

(X : Setoid) where

constructor MkModelOver

Model : Model Pres

Env : X ~> cast Model

PreservesEnv : {Pres : Presentation}

-> {X : Setoid}

-> (a, b : Pres `ModelOver` X) ->

(cast {to = Setoid} a.Model

~> cast b.Model) -> Type

PreservesEnv a b h =

(X ~~> cast b.Model).equivalence.relation

(h . a.Env) b.Env

record (~>)

{Pres : Presentation} {X : Setoid}

(A, B : Pres `ModelOver` X) where

constructor MkHomomorphism

H : (A .Model) ~> (B .Model)

preserves : PreservesEnv A B (H .H)

record Extension {Pres : Presentation}

(A : Model Pres)(X : Setoid) where

constructor MkExtension

Model : Model Pres

Embed : A ~> Model

Var : X ~> cast Model

record (~>) {Pres : Presentation}

{A : Model Pres} {X : Setoid}

(Extension1, Extension2 : Extension A X) where

constructor MkExtensionMorphism

H : (Extension1).Model ~> (Extension2).Model

PreserveEmbed :

(cast A ~~> (Extension2).Model)

.equivalence.relation

(H . (Extension1).Embed)

(Extension2).Embed

PreserveVar :

(X ~~> cast (Extension2).Model)

.equivalence.relation

((H).H . (Extension1).Var)

(Extension2).Var

Fig. 12. Structure and its preservation for (a) algebras over a setoid, and (b) extensions of an algebra

homomorphism that moreover makes the following diagram commute:

X

a.Model

b.Model

a.Env

b.Env

Hh=

Similarly, given a T -algebra A, an extension a = (a.Model, a.Var, a.Embed.H) of A by a set X is a triple

consisting of a T -algebra a.Model, a function a.Var : X → Ua.Model, and a T -homomorphism

a.Embed.H : A → a.Model, and morphisms of extensions are T -homomorphisms such that:

X

a.Model

b.Model

UA

a.Var

b.Var

Hh

a.Embed.H

b.Embed.H

= =

Fig. 12 presents the corresponding Frex declarations for algebras over a setoid and extensions. It

expresses the equations in the commuting diagrams using the extensionality equivalence relation

on the function-space setoid from Fig. 5b and the power of an algebra by a setoid (see §5.2).

The free algebra over a set (fral) and the free extension (frex) of an algebra by a set is then the

initial such structure: there is a unique structure-preserving map from the free structure to every

structure. This succinct definition, while standard, packs much structure. By way of introduction,

we’ll unpack it for the free commutative monoid over Fin n, the finite set with n elements.

First, we designate a commutative monoid for the model structure in the fral. In Fig. 12, we

mentioned the carrier consists of origin-intercepting linear polynomials with Nat coefficients

𝑝 = 𝑎1𝑥1 + . . . + 𝑎n𝑥n, which we represent with n-tuples of natural numbers and pointwise addition:

14

Frex: dependently-typed algebraic simplification Draft, 2023

Carrier : (n : Nat) -> Setoid

Carrier n = VectSetoid n

(cast Nat)

0 := 0𝑥1 + . . . + 0𝑥𝑛 𝑝+𝑞 := (𝑎1 + 𝑏1)𝑥1 + . . . + (𝑎n + 𝑏n)𝑥n
:= [0, . . . ,0] := [𝑎1+𝑏2, . . . ,𝑎n+𝑏n]

= replicate n 0 = map (uncurry (+)) (zip as bs)

Call the resulting algebra Model n : CommutativeMonoid. For the Env component, use tabulation to

define unit n : Fin n → Carrier n, with 1 in the argument position and 0 elsewhere:

unit n 𝑖 := 1𝑥𝑖

:= [0, . . . ,0,1,0, . . . ,0]

= tabulate $ dirac i

where
3
:

dirac i j :=

{
i = j : 1

i ≠ j : 0

The initiality of this structure follows from the normal form property — every origin-intersecting

linear polynomial 𝑝 can be represented as 𝑝 =
∑𝑛

𝑖=1 𝑎𝑖 · unit n i:

normalForm : (n : Nat) -> (xs : U (Model n)) -> xs =

(Model n).sum (tabulate $ \i => (index i xs) *. (unit n i))

Since monoid homomorphisms preserve the summation and multiplication-by-a-natural, the unique

structure preserving map h : (Model n, unit n) → a is this homomorphism:

h xs = a.Model.sum (mapWithPos (\i,k => k *. a.Env.H i) xs)

This standard argument lies behind many simplifiers, as well as more advanced techniques like

normalisation-by-evaluation. Frex takes the same approach, but also explores how to use general-

purpose constructions involving frals and frexes, and bespoke facts about algebraic structures, to

construct new frals and frexes.

We can now implement the solve functions. The input is a proof that the interpretations of both

sides of the equation are equal in the fral or the frex. From such a proof we can conclude that their

images under every homomorphism out of the fral or the frex are equal, in particular under the

unique homomorphism into the input algebra. This proof is what the type of solve guarantees.

5.2 Powers

The commutative monoid structure Model n instantiates a general construction: T -algebras have

powers by setoids. The power of an algebra A by a set(oid) X is the terminal parameterisation.
Parameterisations, shown succinctly in the following diagram, are an X-indexed collection of

algebra homomorphisms a.Eval f : a.Model → A:

X

a.Model ~~> A

b.Model ~~> A

a.Eval

b.Eval

pre Hh=

Requiring a.Eval f to be homomorphic implies that operations are given pointwise. The structure

preservation uses the contravariant action pre Hh precomposing a homomorphism Hh : a.Model →
b.Model. Universality singles out the carrier of the power as the function-space X ~~> a.Model. For

X = Fin n, we can represent it by n-tuples from U A.

2
This function is in fact Kronecker’s delta, but the shorter name Dirac’s delta seems more familiar to readers.

15

Draft, 2023 G. Allais, E. Brady, N. Corbyn, O. Kammar, and J. Yallop

5.3 Frex via coproducts with fral

The fral and the frex relate: the free extension of A by X is the coproduct of A with the free algebra

over X. Coproducts are the initial cospans, showed succinctly in the following diagram:

A1

a.Sink

b.Sink

A2

a.Lft

b.Lft

Hh

a.Rgt

b.Rgt

= =

A cospan consists of two homomorphisms with a shared codomain. All algebras have coproducts,

but these may be difficult to represent. However, in some cases such as commutative monoids, the

coproduct is particularly straightforward to represent: its carrier is the cartesian product of the

component carriers.

The universal property of the frex A[X] combines those of the fral FreeTX and its coproduct with

A. The fral’s universality equates the left triangles:

X

A[X]

a.Model

UA

Var

a.Var

Hh

Embed.H

a.Embed.H

= = Free T X

(Free T X) ⊕ A

a.Sink

A

Lft

a.Lft

Hh

Rgt

a.Rgt

= =

This identification lets us construct:

CoproductAlgebraWithFree pres a x : (free : Free pres x) ->

(coprod : Coproduct a free.Data.Model) -> Frex a x
For commutative monoids it gives the commutative monoid of linear polynomials with natural

numbers as degree-1 coefficients whose carrier is represented by (U A, Vect n Nat).

5.4 Fral via an initial algebra frex

Since developing the sound and complete frex can be tedious, there is a generic mechanism for

reusing this work to derive a corresponding fral with less effort. This method is based on the

following calculation that uses a categorical principle: the free algebra construction preserves initial

constructions. Let O be the initial algebra. Since the empty set is the initial set, by this principle,

the free algebra on the empty set FreeT∅ is also the initial algebra. We then calculate the free

extension as follows:

FreeT X � FreeT (X + ∅) � (FreeT X) ⊕ (FreeT∅) � O[X]

Therefore, we may construct the fral from an initial algebra and its frex:

ByFrex : (initial : Free pres (cast Void)) ->

Frex initial.Data.Model s -> Free pres s
This generic construction produces suboptimal representations. For example, the initial monoid

is easy to construct: its carrier is the unit type. Freely extending this initial monoid produces

alternating lists, that interleave the unit value. Taking variable lists instead leads to a simpler

representation, but requires more complicated proofs. So Frex allows us to trade rapid prototyping

for efficient representation.

5.5 Reusing frexlets

The final example demonstrates reuse of one simplifier when constructing another. Recall the

presentation of involutive monoids from the end of Sec. 4.

Proposition 5.1 (Jacobs). The free involutive monoid on X is the free monoid on the product
(Bool,X). The frex of an involutive monoid by X is the frex of its underlying monoid by (Bool,X).

16

Frex: dependently-typed algebraic simplification Draft, 2023

We can prove this proposition directly, establishing the involutive axioms. We have taken this

strategy in Frex. However, we can phrase this result in much greater generality, and give a higher-

level proof, using Jacobs’s axiomatisation of involutions [22]. This more abstract proof generalises

to other notions of involutive algebras, and we plan to exploit it in the future for generic frexlet

reuse. However, the more abstract proof goes beyond the scope of this manuscript, involving more

abstract category theoretic notions.

6 COMPLETENESS AND CERTIFICATION

Frex uses setoids beyond a mere completion: it automatically extracts the proofs frexlets derive.

Concretely, the fral and frex can be constructed by quotienting the term algebra with an equivalence

relation: provability. For the fral, it is provability with respect to the axioms of the theory, or a

postulated equivalence in the given variables setoid. For the frex A[X], we further postulate constants
𝑎 for every element 𝑎 : U A, and the provability relation includes the following evaluation equations,

for every operation 𝑓 : 𝑛 and constants 𝑐
1
, . . . , 𝑐

𝑛
: 𝑓 (𝑐

1
, . . . , 𝑐

𝑛
) = 𝑓 (𝑐1, . . . , 𝑐𝑛). The inhabitants of

the provability relations deeply-embed equational proofs.

These resulting candidate ‘abstract’ fral and frex validate the universal property, and Frex

implements this validation. As a consequence, the provability relation coincides with equality in

the fral or frex, therefore, these frexlets are complete. The provability relations are not effective —

there is no general algorithm deciding, for all algebraic theories and two terms, whether the two

terms are provably equal. Therefore, we can’t use the abstract fral and frex to simplify terms by

simple evaluation, and we need the creativity of frexlet designers. However, as any other model,

soundness ensures that we can construct proofs using a given frexlet simplifier. By invoking the

universal property, we get a deeply embedded proof that we can inspect, simplify, print, and certify.

For concreteness, lets look at proof extraction for the frex. Extracting equational proofs for all

algebras is similar, using the abstract fral and the fral universal property. Take a typical input to

the frex solve function, namely a concrete algebra a, and an equation X ⊎ U a ⊢ 𝑡 = 𝑠 involving

variables and concrete elements in the algebra represented by terms over the disjoint union

X ⊎ U a. The abstract frex in this situation is the term algebra over X ⊎ U a quotiented by provability:

A := Term (X ⊎ U a)/Provability. Even though A validates the universal property, the interpretation of

𝑡 and 𝑠 in A are themselves, i.e. A ⎜𝑡⨆︁ = 𝑡 . Provability proofs between A ⎜𝑡⨆︁ and A ⎜𝑠⨆︁ are non-effective
— all they amount to are deep-embeddings of equational proofs in a, and A doesn’t help us find

them. However, if we have a frex whose equivalence relation is effective, then we can use A as

follows. The function solve requires an environment env : X → U a, and then appeals to the universal

property of the frex a[X] with respect to the algebra a and this environment. The abstract frex A is

also an algebra with an appropriate environment — it is a frex after all. We can therefore appeal to

the universal property for a[X] and get a proof in the setoid A for the interpretation of our equation

of interest. The equality proof in A is a deep-embedding of an equational proof in a, our goal.

Pause at this point and reflect about this implementation. We don’t need to write any proof

extraction code for our solvers. The fral’s and the frex’s universal properties have done all the

presentation-specific heavy-lifting. Frexlet designers shallowly construct proofs, but Frex can

nonetheless produce, for free, the deeply-embedded proof. The remainder of this section explains

how Frex processes (simplifies, prints, certifies) these deeply-embedded proofs.

Frex’s Lemma over a theory is a pair of terms with finite support together with a proof that they

are equal in the free algebra of the theory. Such lemmata are sound: every Lemma for a theory holds

in all models of this theory. Frex provides a mkLemma smart constructor which runs the given free

algebra simplifier, constructs a proof that a stated equivalence holds, and returns a valid Lemma.

17

Draft, 2023 G. Allais, E. Brady, N. Corbyn, O. Kammar, and J. Yallop

data RTList : Rel a -> Rel a where

Nil : RTList r x x

(::) : {0 r : Rel a} -> {y : a}

-> r x y -> RTList r y z

-> RTList r x z

(a) reflexive-transitive closure

data Symmetrise : Rel a -> Rel a where

Fwd : {0 r : Rel a} -> r x y

-> Symmetrise r x y

Bwd : {0 r : Rel a} -> r x y

-> Symmetrise r y x

(b) symmetric closure

Derivation : (p : Presentation)

-> (a : PresetoidAlgebra

p.signature)

-> Rel (U a)

Derivation p a

= RTList -- Reflexive, Transitive

$ Symmetrise -- Symmetric

-- Congruence

$ Locate p.signature a.algebra

$ Step p a -- Axiomatic steps

(e) linear derivations

data Locate : (sig : Signature) -> (a : Algebra sig) ->

Rel (U a) -> Rel (U a) where

||| We prove the equality by invoking a rule at the

||| toplevel

Here : {0 r : Rel (U a)} -> r x y

-> Locate sig a r x y

||| We focus on a subterm `lhs` that may appear in

||| multiple locations and rewrite it to `rhs` using a

||| specific rule.

Cong : {0 r : Rel (U a)} ->

(t : Term sig (Maybe (U a))) ->

{lhs, rhs : U a} -> r lhs rhs ->

Locate sig a r (plug a t lhs) (plug a t rhs)

(c) unary congruence closure

data Step : (pres : Presentation)

-> (a : PresetoidAlgebra pres.signature)

-> Rel (U a) where

Include : {x, y : U a} -> a.relation x y

-> Step pres a x y

ByAxiom : {0 a : PresetoidAlgebra pres.signature}

-> (eq : Axiom pres)

-> (env : Fin (pres.axiom eq).support -> U a)

-> Step pres a

(a .bindTerm (pres.axiom eq).lhs env)

(a .bindTerm (pres.axiom eq).rhs env)

(d) axiomatic steps

Fig. 13. Layered (a–d) representation of linear derivations (e)

This mechanism allows users to build up a library of lemmata for their theories. Users can then

seamlessly invoke these lemmata in any model, avoiding further Frex calls. This approach however

forces the user’s project to depend on most of Frex indirectly through such modules. To avoid such

dependencies, Frex also supports proof extraction, allowing users to produce standalone lemmata

libraries independent of the Frex library.

6.1 Extracting certificates

Our goals for extraction are to (1) produce libraries from lemmata, and (2) produce somewhat

idiomatic Idris2 code. The derivation found by Frex may not be what a human would have chosen

but it should definitely be possible for a sufficiently-patient human to follow the reasoning steps.

The main challenge was to go from a rich type of derivation trees with arbitrarily nested

transitivity, symmetry, and 𝑛-ary congruence steps to a type of linear/flat derivations that could be

pretty-printed using Idris2’s combinators for setoid reasoning. We use a layered representation for

derivations (Fig. 13): (a) the reflexive-transitive closure of (b) the symmetric closure of (c) the unary

congruence closure of (d) axiomatic reasoning steps.

(a) Reflexive-transitive closure: type-aligned [38] lists of steps in the closed-over relation: the target

18

Frex: dependently-typed algebraic simplification Draft, 2023

units : {a, b : Nat} -> (0 + (a + 0)) + b + 0 = a + b

units = %runElab frexMagic MonoidFrexlet Additive

agdaEx : ∀ {x y} → (2 + x) + (y + 3) ≡ x + (y + 5)

agdaEx = fragment CSemigroupFrex +-csemigroup

Fig. 14. Frex’s reflection mechanism in (a) Idris2 and (b) Agda

element of each element in the list is the source element of the next step.

(b) Symmetric closure: either the relation or its opposite.

(c) Unary congruence closure: It suffices to pair a term with a distinguished variable for the contextual

hole, together with a step in the closed-over relation. To ease our pretty-printing code, we distinguish

between using the closed-over relation in an empty context, and using it in a context with a

distinguished variable represented by the Idris value Nothing.

(d) Axiomatic steps An atomic step is either a setoid equivalences, or one of the theory’s axioms.

Putting these together, we get the type of derivations (Fig. 13(e)).

Every provable derivation decomposes into a value in this layered representation. The modular

definition makes decomposition straightforward: we use generic combinators for each closure

relation-transformers. Closure under congruence is the trickiest part, decomposing an 𝑛-ary congru-

ence into 𝑛 separate unary congruences, pushing them under the reflexive-transitive and symmetric

closure layers, and erasing any congruence steps with the identity context.

6.2 Proof simplication

Certification also allows us to inspect Frex-generated proofs. Frexlet developers can check whether

data-structures and proofs are suboptimal, spurring code refactoring. Concretely, when developing

Frex, we noticed proofs with loops: multi-step derivations that start and end in the same term.

Such loops come from internal data structures that optimise simplifier-development effort, but

insert semantically-irrelevant subterms that can be simplified away. Frex implements a generic

proof simplifier that automatically removes all of these loops. This mechanism suggests future

investigation of Frex’s proof-structure, and additional simplification passes.

7 REFLECTION

Thus far, our examples illustrated interaction with Frex using solve. The function solve takes, apart

from the fral or frex simplifier, the number of free variables and the abstract syntax of a goal. The

existing simplifiers in, say, Agda’s standard library provide a similar interface. These simplifiers

also provide ergonomic usage with Agda’s proof reflection mechanism.

Proof reflection is a metaprogramming paradigm, available in proof assistants and dependently-

typed programming languages. It allows bi-directional communication between the language and its

implementation. The language provides: a representation of its syntax; operators for constructing,

manipulating and destructuring these term-representations; and primitives for reifying terms into

the representation (quoting), and reflecting encoded terms into ordinary terms (anti-quoting).

Given mechanisms for querying unsolved proof obligations, proof reflection enables the imple-

mentation of verified decision procedures for automatically discharging such obligations without

boilerplate [9, 12]. Coupled with the strong meta-theoretic properties that dependently-typed im-

plementations of decision procedures can enforce (e.g. relative soundness/completeness), reflection-

driven interfaces yield easy-to-use tactics with firm guarantees. It is then natural to ask: can we use

proof reflection to automatically call Frex without providing the equation to discharge explicitly?

While the answer is ‘yes’, with example code in Fig. 14, it’s challenging to adhere to Frex’s design

philosophy: extensibility and common core reuse. We avoid custom reflection-based drivers for

individual simplifiers, providing instead a single metaprogram. This program can be instantiated

for simplifiers, built-in or user-defined, for any signature and presentation.

19

Draft, 2023 G. Allais, E. Brady, N. Corbyn, O. Kammar, and J. Yallop

The Idris2 and Agda implementations of Frex both contain reflection-based drivers with identical

interfaces. Each driver receives a frex simplifier and a model of the corresponding presentation.

They try to infer the abstract syntax of the goal equation, based on the expected type.

The drivers have no information about the structure of the algebraic signature in question ahead

of time. Frex’s inductive Term representation means that relevant abstract operator names can be

extracted from the presentation. However, matching goal fragments against the abstract syntax of

the algebraic interpretation is tightly-coupled to the language’s reflection primitives. Implementing

Frex in both Idris2 and Agda allows us to compare differences in behaviour.

A key example is the normalisation of arithmetic expressions such as (x + 1) + y = x + (1 + y).

Currently in Idris2, when the driver receives the reflected syntax, the normaliser has already reduced

it to (x + 1) + y = x + S y. As far as the theory of monoids is concerned, S y is an atomic expression

and is therefore treated as another free variable, distinct from y. The Idris2 driver then incorrectly

infers the invalid equation Dyn 0 .+. Sta 1 .+. Dyn 1 =-= Dyn 0 .+. Dyn 2, and fails to discharge the

goal. In contrast, Agda will not preemptively normalise a quoted expression. Consequently, the

Agda driver successfully finds the equation, and Frex solves the previous example. We can find

similar pathological examples that also confuse the Agda driver, and there’s a trade-off involving

the engineering effort required to develop heuristics that avoid such pathologies.

8 EVALUATION

We have been developing the Frex for more than a couple of years, but it’s still in its early stages,

and we expect substantial future changes in its functionality, expressiveness, ergonomics, and

efficiency. It is premature to conduct extensive and expensive studies like usability and large-

scale performance, or extensive benchmarking with respect to other, substantially more mature,

ecosystems. Nonetheless, we provide some reference measurements of user-experience and frexlet-

developer experience to check whether this new design is feasible, and identify further directions.

8.1 Using Frex

Quantitative evaluation. Idris2 encourages interactive, type-driven development, thus it is impor-

tant that the checker is responsive after changing the program. Following Nielsen [29], our Idris2

implementation aims for response times under one second, and we consider a response time of

over 10 seconds when type checking a modification to Frex client-code to be a bug in Idris2.

For typical small equalities that arise incidentally in dependently typed programs, Frex’s per-

formance falls very comfortably within Nielsen’s limits. For example, the checking time
4
is under

0.1s for terms of size six or below with the commutative solver and terms of size fourteen or below

with the non-commutative solver, creating an impression of instantaneous response.

As the term size increases, Frex eventually crosses the one second interactivity threshold. Fig. 15

shows how type-checking times grow with term size and with the number of free variables in a

randomly-generated term for the commutative and non-commutative monoid solvers. As the figure

shows, Frex’s type-checking time generally remains below the interactivity threshold up to terms

of around size 30, and only exceeds the ten second threshold (beyond which users’ attention is

lost) for a few terms of size 45 or above. Our experience with Frex development suggests that the

anomalously high checking times for these terms is likely to arise from a performance bottleneck in

Idris2’s evaluator (Sec. 9) and that the ongoing development of Idris2 may eventually eliminate the

problem, bringing the type-checking time for most terms up to size sixty down to a few seconds.

Qualitative evaluation. To experience using Frex, we reproduced Brady et al.’s dependently-typed
representation of binary arithmetic [11]. They index binary representations by the natural numbers

4
We use a rather dated AMD FX-8320 machine with 16GB memory, running Idris 2 version 0.5.1-1011cc616 on Debian Linux.

20

Frex: dependently-typed algebraic simplification Draft, 2023

0 10 20 30 40 50 60

0.1

1

10

instantaneity threshold

interactivity threshold

attention threshold

term size (leaves)

r
u
n
t
i
m
e
(
s
)

commutative solver 1 free var

5 free vars

10 free vars

15 free vars

0 10 20 30 40 50 60

0.1

1

10

instantaneity threshold

interactivity threshold

attention threshold

term size (leaves)

r
u
n
t
i
m
e
(
s
)

non-commutative solver 1 free var

5 free vars

10 free vars

15 free vars

Fig. 15. Frex monoid simplifiers type-checking times

that they represent, and so when they define the arithmetic operations, the programmer needs

to prove their correctness. These proofs typically involve insightful equational reasoning steps

interleaved with rote calculational steps such as:

c_s + 2*(val_s + ((2 `power` width)*c0)) = ((c_s + val_s) + val_s) + (2*((2 `power` width)*c0))

which we may discharge by calling solve with the equation repeated. We don’t use our reflection

capabilities since these kinds of examples are beyond their reach at the moment. The experience

is reasonable, with the usual pain points involved in invoking an algebraic simplifier without a

reflection mechanism: we need to repeat the equation and its relevant rewriting-context when

calling Frex, but notably no other pain. The experience was worse in earlier implementations of

Frex due to several now-eliminated performance bottlenecks in Idris2.

8.2 Extending Frex

The Frex library itself, around 9,500 lines of Idris code, compiles in around 24 seconds. To evaluate

its extensibility, we assigned 1 experienced Frex developer the task to extend the library with

an involutive monoid frexlet. The development took place over a period of two weeks, with the

code-development phase taking 10 days.

This paragraph is for readers who are interested in the breakdown of the experiment. It took the

developer around 1 afternoon to design the frex data-structure and produce a pencil-and-paper

proof for soundness-and-completeness. However, the developer noticed the structural simplicity of

the frexlet, and conjectured a more modular construction might be possible. Within 2 days, they

found Jacobs’s axiomatisation of involutive algebras [22], and refactored the pencil-and-paper proof

using Jacobs’s concepts, though still specialised to involutive monoids only. Then code-development

21

Draft, 2023 G. Allais, E. Brady, N. Corbyn, O. Kammar, and J. Yallop

began, and the developer discovered a new performance bottleneck in Idris2, which meant that

every new 2-3 lines of Idris2 code took 5 minutes or longer to type-check. To work around this

issue, the developer proceeded with the 3-buffer approach — using separate buffers for completed;

currently-checked; and under-construction definitions. Later, when preparing this manuscript, the

developer used the ByFrex construct to implement the involutive monoid fral from this frex. This

took an additional half-afternoon, with most of the time spent on reducing the construction of the

initial involutive monoid to the initial monoid. The management of notation is cumbersome and

slowed the fral development by perhaps an hour or so.

Overall the experience was straightforward. We view the experiment as fairly noisy due to the

effect of the type-checker bottleneck (now eliminated, see next section). Implementation delays due

to algebraic generalisation are likely unavoidable when curious independent-thinking developers

are involved. Since it lead to a new theorem and frexlet design insights, we regard it an advantage.

We hypothesise that without such noise, for example, when developing a frexlet on a mature system

or as part of a product-focussed development team, the implementation would take far less time.

To put a number on it, such an experienced developer can develop such a frexlet in a matter of days.

In any case, despite the noisy measurement, since the involutive monoids frexlet now forms a part

of Frex, we regard a 2-week development of a shipping component as acceptable. We expect Frex

will need an overhaul of its notation-system as it accrues more frexlets. This refactoring might

depend on proposing additional notation-management features to Idris2 first.

9 SYSTEM DESIGN LESSONS

Frex uses generic and dependently-typed programming techniques extensively, requiring signifi-

cant type level computation— an interesting challenge for a language implementation. In developing

Frex in Agda and Idris2 we have eliminated some performance bottlenecks in Idris2’s type checker,

and learned valuable lessons about practical dependently-typed language implementation. We

share these lessons here, hoping they will help developers of other systems!

9.1 Idris2

At the heart of the type checker is an implementation of dynamic pattern unification [16, 28, 33],

which instantiates implicit arguments, and a conversion checker, which checks whether two terms

evaluate to the same common reduct. Each of these requires an evaluator. Idris2 uses a form of

normalisation by evaluation [7] with a syntactic representation (terms) and a semantic representation
(values in weak head normal form). The static evaluator is call-by-name and produces a weak head

normal form from a term, and Idris2 implements a quotation mechanism which reconstructs a term

from a semantic representation of a weak head normal form.

Performance of Evaluation. Most performance bottlenecks we have encountered in developing Frex

have been caused by evaluation taking significant time, identified by profiling the Idris2 executable.

Idris2 compiles to Scheme, and we have experimented with alternative methods of implementing

the evaluator, including evaluating via Scheme to take advantage of the runtime. We have made

modest performance gains this way, but in the end nothing is more effective than removing the

need to evaluate in the first place! There are various ways we can achieve this, including preserving

sharing in subterms, choosing appropriate data representation in unification, and taking advantage

of the typical structure of unification and conversion problems.

Preserving Sharing. The nature of dependently-typed programs is that instantiating implicit argu-

ments leads to significant sharing of subterms. For example, [True, False] : Vect 2 Bool elaborates

to (::) (S Z) Bool True ((::) Z Bool False (Nil Bool)), sharing the subexpressions Z and Bool. As the

vector gets longer, sharing increases. Following Kovács [24], we preserve sharing by introducing a

22

Frex: dependently-typed algebraic simplification Draft, 2023

metavariable for every implicit argument, inlining only when we can guarantee that the definition

cannot break sharing. Consequently, we inline metavariables whose definition is itself a metavari-

able applied to local variables. Otherwise, we do not substitute metavariable solutions into terms at

all until they are required for unification or display purposes.

Unification. Unification operates on values, not terms, but sometimes we need to postpone a

unification problem if it is blocked due to an unsolved metavariable. When the metavariable is

solved, we need to re-evaluate the terms being unified. Previously, we stored postponed problems as

a pair of (syntactic) terms in an environment, re-evaluated once the blocking metavariable is solved.

However, Frex produces some large postponed problems, for which quotation to syntax is expensive.

Now, in addition to the evaluator and quotation, we have introduced a continue operation, which
re-evaluates the metavariable at the head of a blocked value, and avoids unnecessary quotation.

Conversion Checking. Types in Frex can be large, and sometimes a unification problem that arises

while type checking Frex is postponed due to an unsolved metavariable which blocks evaluation.

In this case, we might have a unification problem of the form f x1 ... xn =?= f y1 ... yn where

the xi, yi etc may be very large subterms, and the terms unify if they are convertible. If most

corresponding terms are equal after evaluation, but one differs, it may take a long time to find

the differing subterm which blocks unification, especially since we need to evaluate to check the

convertibility of subterms. Fortunately, terms in blocked unification problems tend to differ at the

heads, rather than a deeply nested subterm. Therefore, we always check the heads of the values

of corresponding xi and yi first. If any are unequal, we postpone the unification problem. This

heuristic has a significant effect on performance, preventing a lot of unnecessary evaluation.

Influence on Language Design and Ecosystem. Developing Frex has identified several desirable

language features which have been implemented in Idris2. Many of these have been minor changes

to the treatment of implicit arguments and parameters blocks. More significantly, Frex makes

extensive use of auto implicit arguments. These are solved by a search procedure which uses

constructors and functions marked as search hints. To help in developing Frex — and in its

readability — we have added the ability to mark local functions as search hints, which allows us to

restrict the scope of search hints and avoid an excessive search-space increase. Frex is now part of

the Idris2 test suite, ensuring that it will remain consistent with any updates to Idris2.

9.2 Agda

Agda is a well-established dependently-typed interactive proof environment. Idris2 and Agda and

their communities have different goals, leading to subtle Frex implementation differences.

The key differences between the the two languages arise from Agda’s focus on proving versus

Idris2’s focus on programming. At the time of writing, Idris2 uses a single universe [30], allow-
ing Type: Type, hence inconsistent by Girard’s paradox. In contrast, Agda has a well-developed

predicative theory of universes, avoiding Girard’s paradox. Agda also protects users from other

logical paradoxes of its more experimental features with its ‘--safe’ compiler flag. In the spirit

of Hu and Carette [19], we adopt a conservative set of compiler options (--without-K --safe).
All our definitions are universe-polymorphic. This broadens the applicability of Frex in the Agda

ecosystem by guaranteeing compatability with all of Agda’s various configurations. It further

assures us about the correctness of Frex itself. Corbyn [15] discusses these ideas in greater detail.

23

Draft, 2023 G. Allais, E. Brady, N. Corbyn, O. Kammar, and J. Yallop

10 RELATEDWORK

Within the Coq ecosystem, an abundance of tactics enable algebraic simplification. Boutin’s ring [9]

and field tactics
5
let programmers discharge proof obligations involving (and requiring!) addition,

multiplication, and division operations. Strub’s CoqMT [37] extends Coq’s Calculus of Inductive

Constructions, allowing users to extend the conversion rule with arbitrary decision procedures

for first order theories (e.g. Presburger arithmetic). To guarantee this extension preserves good

meta-theoretical properties, Strub only extends term level conversion. Implementations of Hilbert’s

Nullstellensatz theorem (Harrison’s in HOL Light [18] and Pottier’s in Coq [31]) help users discharge

proofs obligations involving polynomial equalities on a commutative integral domain.

Coq’s setoid_rewrite is an advanced tactic library for setoid rewriting.
6
Disregarding the dif-

ference between the direct manipulation of proof-terms in Idris2 and the tactic-based manipulation

in Coq, setoid_rewrite provides abstractions for manipulating parameterised relations (covariant

and contravariant), and users can register setoids of interest and custom ‘morphisms’ — horn-like

equational clauses — with the library. The various tactics in the library apply these user-defined

axioms to the goal. Users may also register tactics, and the library includes an expressive collection

of term-traversal primitives (climbing up and down the syntax tree, repeating sub-tactics, and

so on). While setoid_rewrite doesn’t deal with algebraic simplification directly, it may help in

generalising equality-based simplifiers to setoid-based simplifiers. In comparison, Frex’s setoid

reasoning is minimal, implementing only the necessary features for the library.

In Idris1, Slama and Brady [34, 35] implement a hierarchy of rewriting procedures for algebraic

structures of increasing complexity. Though the procedures’ completeness is not enforced by type

like in Frex, these simplifiers are based on a Knuth-Bendix resolution of critical pairs, and so are

likely to be complete. Frex also investigates a hierarchy of rewriting procedures, but: (1) frexlets

are complete by construction, (2) Frex is based on normalisation-by-evaluation (like Boutin’s tactic,

and unlike Slama-Brady), and (3) our library is extensible, where sufficiently motivated users can

extend the library with bespoke solvers, and we provide some support for them to do so.

Normalisation-by-evaluation is an established technique for simplifying terms in a concrete

equational theory, often involving function types. One compelling example is Allais et al.’s work [3],

which demonstrates by a careful model construction that the equational theory decided by nor-

malisation-by-evaluation can be enriched with additional rules. They implement a simply-typed

language internalising the functorial and fusion laws for list fold, map, and append. They prove

their construction sound and complete with respect to the extended equational theory.

In Agda, Cockx et al.’s ‘--rewriting’ flag [13, 14] allows users to enrich the existing reduction

relation with new rules. Their implementation goes beyond Allais et al.’s: it may restart stuck

computations. Guaranteeing the soundness of user-provided reduction rules by ensuring they

neither introduce non-termination nor break canonicity is left to future work. Concretely comparing

both of their techniques to our proposed technique, neither currently deals with commutativity.

Implementing Frex meant formalising the fragments of universal algebra we needed for its

architecture. Formalising more complete fragments of the theory is an active area of research, with

recent examples by [17] and [1] in Agda.

The Meta-F★ language [27] provides normalisation tactics for commutative monoids and semi-

rings through its metaprogramming facilities. Frex’s usage resembles these tactics’ usage. We hope

a Frex port can use their metaprogramming facilities to reduce some syntactic noise.

5
See the Coq documentation: https://coq.inria.fr/distrib/current/refman/addendum/ring.html .

6
See the Coq documentation: https://coq.inria.fr/refman/addendum/generalized-rewriting.html .

24

https://coq.inria.fr/distrib/current/refman/addendum/ring.html
https://coq.inria.fr/refman/addendum/generalized-rewriting.html

Frex: dependently-typed algebraic simplification Draft, 2023

11 CONCLUSIONS AND FURTHERWORK

We have presented a novel, mathematically structured, design for algebraic simplification suites that

guarantees sound and complete simplification, even of user-defined simplifiers. Our preliminary

evaluation shows that, despite its high level of abstraction, the resulting library is responsive, and

provides comparable functionality to other libraries, in a combination of features no single library

provides. Frex’s unique design — the frex and the fral — offer new prospects and questions.

Yallop et al.’s [39] partial evaluators include additional frexlets (abelian groups, semirings, dis-

tributive lattices). We plan to follow suit and port the remaining simplifiers. The main challenge:

unlike Yallop et al., we need to mechanically prove these frexlet are complete, which is more costly.

We would then be in a fair position to conduct larger evaluation and comparison studies. One

particularly elegant motivation for including more simplifiers is the following. The frex generalises

the ‘ring of polynomials over a ring’ to that of an algebra of polynomials over an algebra. By porting

Yallop et al.’s family of representations, we will fully realise this generalisation.

Our experiment with reflection as well as the reflection-based interfaces of existing solvers show

that with enough engineering efforts, library designers can extract the goal equation from the goal

type. Unfortunately, software engineers for dependently-typed languages are a scarce resource. We

want other principled approaches. In practice, when invoked inside a chain of equational steps, the

goal equation already appears in the source-code, albeit in a context. Programmers seem willing to

type the goal equation once, since it documents the reasoning steps, but seem unhappy to do so

twice. Perhaps generic programming with holes
7
could use this already-available information.

Simplifier certification may enable bootstrapping the library along the following lines. In the

first iteration, we start with a hierarchy of less efficient, but easy to implement, simplifiers. Then,

using the library, one develops a hierarchy of more efficient simplifiers and proof-simplifiers. With

the certification mechanism, one then extracts proofs to complete the bootstrap.

We would like to extend Frex’s design beyond algebraic structures. More general notions of

theories abound: multisorted, second-order/parameterised, and essentially algebraic. We may then

cover much more complex situations, such as decision procedures for first order theories (e.g.

Presburger arithmetic, cf. Strub’s CoqMT [37]) and normalisation-by-evaluation for fusion laws [3],

or equational manipulation of big-operators [8, 25, 26]. Note that Frex can deal with big-operators

such as sum so long as the argument list is a concrete collection of constants and variables such as

sum [2, x]. We only need the more sophisticated theories when the length of the lists is abstract.

Frex uses many category-theoretic concepts, but the library itself is oblivious to category theory.

We hope that a rich category theory library like Hu and Carette’s [19] agda-categories would
lead to a sleeker and even more modular Frex implementation. In particular, we want to explore a

general treatment of involutive algebras following Jacobs [22], and Power’s distributive tensor of
equational theories [21, 32] for a uniform treatment of semi-ring varieties. By instantiating each of

the 6 semi-group varieties, we can cover each combination of the following combinations:(
{ordinary} × {ordinary, involutive, non-reversing involutive}

∪ {commutative} × {ordinary, involutive}

)
× {semigroup,monoid, group}

and modularly construct (2 + 3) × 3 = 15 semi-ring varieties, including rings and semirings. Such a

modular treatment would provide a multiplicative development boost.

ACKNOWLEDGMENTS

Supported by the Engineering and Physical Sciences Research Council grant EP/T007265/1 and an

Industrial CASE Studentship, a Royal Society University Research Fellowship, a Facebook Research

7
See Brad Hardy’s Agda-Holes library: https://github.com/bch29/agda-holes .

25

https://github.com/bch29/agda-holes

Draft, 2023 G. Allais, E. Brady, N. Corbyn, O. Kammar, and J. Yallop

Award, and an Alan Turing Institute seed-funding grant. An earlier, unpublished, outline of this

work appeared as part of a short-abstract in TyDe’20 [2].We are grateful to Jacques Carette, Donovan

Crichton, Joey Eremondi, Conor McBride, James McKinna, Sam Lindley, Wojciech Nawrocki, Kasia

Marek, and Robert Wright for useful discussions and suggestions.

REFERENCES

[1] Andreas Abel. 2021. Birkhoff’s Completeness Theorem for Multi-Sorted Algebras Formalized in Agda. CoRR
abs/2111.07936 (2021). arXiv:2111.07936 https://arxiv.org/abs/2111.07936

[2] Guillaume Allais, Edwin Brady, Ohad Kammar, and Jeremy Yallop. 2020. Frex: indexing modulo equations with free

extensions. (2020). The 5th ACM SIGPLAN International Workshop on Type-Driven Development (TyDe’2020).

[3] Guillaume Allais, Conor McBride, and Pierre Boutillier. 2013. New equations for neutral terms: a sound and complete

decision procedure, formalized. In Proceedings of the 2013 ACM SIGPLAN workshop on Dependently-typed programming,
DTP@ICFP 2013, Boston, Massachusetts, USA, September 24, 2013, Stephanie Weirich (Ed.). ACM, 13–24. https://doi.org/

10.1145/2502409.2502411

[4] Andrea Asperti, Wilmer Ricciotti, Claudio Sacerdoti Coen, and Enrico Tassi. 2009. Hints in Unification. In Theorem
Proving in Higher Order Logics, Stefan Berghofer, Tobias Nipkow, Christian Urban, and Makarius Wenzel (Eds.). Springer

Berlin Heidelberg, Berlin, Heidelberg, 84–98.

[5] John C. Baez and James Dolan. 1998. Higher-Dimensional Algebra III.𝑛-Categories and the Algebra of Opetopes.

Advances in Mathematics 135, 2 (1998), 145–206. https://doi.org/10.1006/aima.1997.1695

[6] Bruno Barras, Benjamin Grégoire, Assia Mahboubi, Laurent Théry, Patrick Loiseleur, and Samuel Boutin. 2021. The
Coq Proof Assistant: Reference Manual. Ring and field: solvers for polynomial and rational equations. Technical Report.
INRIA. Section 3.2.4.

[7] U. Berger and H. Schwichtenberg. 1991. An inverse of the evaluation functional for typed lambda -calculus. In [1991]
Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science. 203–211. https://doi.org/10.1109/LICS.1991.

151645

[8] Yves Bertot, Georges Gonthier, Sidi Ould Biha, and Ioana Pasca. 2008. Canonical Big Operators. In Theorem Proving in
Higher Order Logics, Otmane Ait Mohamed, César Muñoz, and Sofiène Tahar (Eds.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 86–101.

[9] Samuel Boutin. 1997. Using reflection to build efficient and certified decision procedures. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 1281 (1997),

515–529. https://doi.org/10.1007/BFB0014565

[10] Edwin Brady. 2021. Idris 2: Quantitative Type Theory in Practice. In 35th European Conference on Object-Oriented
Programming (ECOOP 2021) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 194), Anders Møller and

Manu Sridharan (Eds.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 9:1–9:26. https:

//doi.org/10.4230/LIPIcs.ECOOP.2021.9

[11] Edwin Brady, James McKinna, and Kevin Hammond. 2007. Constructing Correct Circuits: Verification of Functional

Aspects of Hardware Specifications with Dependent Types. 159–176. 8th Symposium on Trends in Functional

Programming 2007, TFP 2007 ; Conference date: 02-04-2007 Through 04-04-2007.

[12] David Christiansen and Edwin Brady. 2016. Elaborator Reflection: Extending Idris in Idris. Proceedings of the 21st ACM
SIGPLAN International Conference on Functional Programming (2016). https://doi.org/10.1145/2951913

[13] Jesper Cockx. [n.d.]. Type theory unchained: Extending type theory with user-defined rewrite rules. ([n. d.]). Submitted

to the TYPES 2019 post-proceedings.

[14] Jesper Cockx, Nicolas Tabareau, and Théo Winterhalter. 2021. The Taming of the Rew: A Type Theory with Computa-

tional Assumptions. Proc. ACM Program. Lang. 5, POPL, Article 60 (jan 2021), 29 pages. https://doi.org/10.1145/3434341

[15] Nathan Corbyn. 2021. Proof Synthesis with Free Extensions in Intensional Type Theory. Technical Report. University of

Cambridge. MEng Dissertation.

[16] Adam Gundry. 2013. Type Inference, Haskell and Dependent Types. Ph.D. Dissertation. https://personal.cis.strath.ac.uk/

adam.gundry/thesis/thesis-2013-07-24.pdf

[17] Emmanuel Gunther, Alejandro Gadea, and Miguel Pagano. 2018. Formalization of Universal Algebra in Agda. Electronic
Notes in Theoretical Computer Science 338 (2018), 147–166. https://doi.org/10.1016/j.entcs.2018.10.010 The 12th

Workshop on Logical and Semantic Frameworks, with Applications (LSFA 2017).

[18] John Harrison. 2007. Automating Elementary Number-Theoretic Proofs Using Gröbner Bases. In Automated Deduction
- CADE-21, 21st International Conference on Automated Deduction, Bremen, Germany, July 17-20, 2007, Proceedings
(Lecture Notes in Computer Science, Vol. 4603), Frank Pfenning (Ed.). Springer, 51–66. https://doi.org/10.1007/978-3-540-

73595-3_5

26

https://arxiv.org/abs/2111.07936
https://doi.org/10.1145/2502409.2502411
https://doi.org/10.1145/2502409.2502411
https://doi.org/10.1006/aima.1997.1695
https://doi.org/10.1109/LICS.1991.151645
https://doi.org/10.1109/LICS.1991.151645
https://doi.org/10.1007/BFB0014565
https://doi.org/10.4230/LIPIcs.ECOOP.2021.9
https://doi.org/10.4230/LIPIcs.ECOOP.2021.9
https://doi.org/10.1145/2951913
https://doi.org/10.1145/3434341
https://personal.cis.strath.ac.uk/adam.gundry/thesis/thesis-2013-07-24.pdf
https://personal.cis.strath.ac.uk/adam.gundry/thesis/thesis-2013-07-24.pdf
https://doi.org/10.1016/j.entcs.2018.10.010
https://doi.org/10.1007/978-3-540-73595-3_5
https://doi.org/10.1007/978-3-540-73595-3_5

Frex: dependently-typed algebraic simplification Draft, 2023

[19] Jason Z. S. Hu and Jacques Carette. 2021. Formalizing Category Theory in Agda. In Proceedings of the 10th ACM
SIGPLAN International Conference on Certified Programs and Proofs (Virtual, Denmark) (CPP 2021). Association for

Computing Machinery, New York, NY, USA, 327–342. https://doi.org/10.1145/3437992.3439922

[20] Gérard P. Huet and Amokrane Saïbi. 2000. Constructive category theory. In Proof, Language, and Interaction, Essays in
Honour of Robin Milner, Gordon D. Plotkin, Colin Stirling, and Mads Tofte (Eds.). The MIT Press, 239–276.

[21] Martin Hyland and John Power. 2006. Discrete Lawvere theories and computational effects. Theoretical Computer
Science 366, 1 (2006), 144–162. https://doi.org/10.1016/j.tcs.2006.07.007 Algebra and Coalgebra in Computer Science.

[22] Bart Jacobs. 2021. Involutive Categories and Monoids, with a GNS-Correspondence. Foundations of Physics 42 (2021),
874–895. Issue 7. https://doi.org/10.1007/s10701-011-9595-7

[23] Donnacha Oisín Kidney. 2019. Automatically and Efficiently Illustrating Polynomial Equalities in Agda. Technical
Report. University College Cork. BSc Dissertation.

[24] András Kovács. 2019. Fast Elaboration for Dependent Type Theories. Talk at EU Types WG meeting, 2019.

[25] Stella Lau. 2017. Theory and implementation of a general framework for big operators in Agda. Bachelor’s thesis,

University of Cambridge.

[26] Leonhard Markert. 2015. Big operators in Agda. Master’s thesis. MSc thesis, University of Cambridge.

[27] Guido Martínez, Danel Ahman, Victor Dumitrescu, Nick Giannarakis, Chris Hawblitzel, Catalin Hritcu, Monal

Narasimhamurthy, Zoe Paraskevopoulou, Clément Pit-Claudel, Jonathan Protzenko, Tahina Ramananandro, Aseem

Rastogi, and Nikhil Swamy. 2019. Meta-F*: Proof Automation with SMT, Tactics, and Metaprograms. In 28th European
Symposium on Programming (ESOP). Springer, 30–59. https://doi.org/10.1007/978-3-030-17184-1_2

[28] Dale Miller. 1992. Unification under a mixed prefix. Journal of Symbolic Computation (1992). http://www.sciencedirect.

com/science/article/pii/074771719290011R

[29] Jakob Nielsen. 1993. Usability Engineering. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[30] Erik Palmgren. 1998. On Universes in Type Theory. In Twenty-Five Years of Constructive Type Theory, Giovanni
Sambin and Jan M. Smith (Eds.). Oxford University Press, Oxford, United Kingdom, Chapter 12, 191–204. https:

//doi.org/10.1093/oso/9780198501275.003.0012

[31] Loic Pottier. 2008. Connecting Gröbner Bases Programs with Coq to do Proofs in Algebra, Geometry and Arithmetics.

In Proceedings of the LPAR 2008 Workshops, Knowledge Exchange: Automated Provers and Proof Assistants, and the 7th
International Workshop on the Implementation of Logics, Doha, Qatar, November 22, 2008 (CEUR Workshop Proceedings,
Vol. 418), Piotr Rudnicki, Geoff Sutcliffe, Boris Konev, Renate A. Schmidt, and Stephan Schulz (Eds.). CEUR-WS.org.

http://ceur-ws.org/Vol-418/paper5.pdf

[32] John Power. 2005. Discrete Lawvere Theories. In Algebra and Coalgebra in Computer Science, José Luiz Fiadeiro, Neil
Harman, Markus Roggenbach, and Jan Rutten (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 348–363.

[33] Jason Reed. 2009. Higher-order constraint simplification in dependent type theory. ACM International Conference
Proceeding Series (2009), 49–56. https://doi.org/10.1145/1577824.1577832

[34] Franck Slama. 2018. Automatic generation of proof terms in dependently typed programming languages. Ph.D. Dissertation.
http://hdl.handle.net/10023/16451

[35] Franck Slama and Edwin Brady. 2017. Automatically Proving Equivalence by Type-Safe Reflection. In Intelligent
Computer Mathematics, Herman Geuvers, Matthew England, Osman Hasan, Florian Rabe, and Olaf Teschke (Eds.).

Springer International Publishing, Cham, 40–55.

[36] Matthieu Sozeau andNicolas Oury. 2008. First-Class Type Classes. In Theorem Proving in Higher Order Logics, OtmaneAit

Mohamed, César Muñoz, and Sofiène Tahar (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 278–293.

[37] Pierre-Yves Strub. 2010. Coq Modulo Theory. In Computer Science Logic, 24th International Workshop, CSL 2010, 19th
Annual Conference of the EACSL, Brno, Czech Republic, August 23-27, 2010. Proceedings (Lecture Notes in Computer Science,
Vol. 6247), Anuj Dawar and Helmut Veith (Eds.). Springer, 529–543. https://doi.org/10.1007/978-3-642-15205-4_40

[38] Atze van der Ploeg and Oleg Kiselyov. 2014. Reflection without remorse: revealing a hidden sequence to speed up

monadic reflection. In Proceedings of the 2014 ACM SIGPLAN symposium on Haskell, Gothenburg, Sweden, September
4-5, 2014, Wouter Swierstra (Ed.). ACM, 133–144. https://doi.org/10.1145/2633357.2633360

[39] Jeremy Yallop, Tamara von Glehn, and Ohad Kammar. 2018. Partially-Static Data as Free Extension of Algebras. Proc.
ACM Program. Lang. 2, ICFP, Article 100 (July 2018), 30 pages. https://doi.org/10.1145/3236795

A PROOF PRINTING AND CERTIFICATION

Fig. 16 shows an automatically extracted proof for the equation (𝑥 • 3) • 2 = 5 • 𝑥 in the additive

monoid structure (Nat, 0, (+)). The extracted proof has 24 steps — far from the shortest proof possible.

Extraction removes reflexivity and transitivity steps, and the pointed bracket tells whether the

step uses the axiom directly (angle points right) or using symmetry (angle points left). Square

27

https://doi.org/10.1145/3437992.3439922
https://doi.org/10.1016/j.tcs.2006.07.007
https://doi.org/10.1007/s10701-011-9595-7
https://doi.org/10.1007/978-3-030-17184-1_2
http://www.sciencedirect.com/science/article/pii/074771719290011R
http://www.sciencedirect.com/science/article/pii/074771719290011R
https://doi.org/10.1093/oso/9780198501275.003.0012
https://doi.org/10.1093/oso/9780198501275.003.0012
http://ceur-ws.org/Vol-418/paper5.pdf
https://doi.org/10.1145/1577824.1577832
http://hdl.handle.net/10023/16451
https://doi.org/10.1007/978-3-642-15205-4_40
https://doi.org/10.1145/2633357.2633360
https://doi.org/10.1145/3236795

Draft, 2023 G. Allais, E. Brady, N. Corbyn, O. Kammar, and J. Yallop

(𝑥 •3) • [2] =
↑

⟨ Right neutrality]

(𝑥 •3) •2• [Y]
⟨ Left neutrality]

↓
= (𝑥 • [3]) •2•Y •Y =

↑
⟨ Right neutrality]

(𝑥 •3• [Y]) •2•Y •Y
⟨ Left neutrality]

↓
= ([𝑥] •3•Y •Y) •2•Y •Y =

↑
⟨ Right neutrality]

([𝑥 •Y] •3•Y •Y) •2•Y •Y
⟨ Right neutrality]

↓
= ([(𝑥 •Y) •Y] •3•Y •Y) •2•Y •Y =

↑
⟨ Left neutrality]

(([Y] • (𝑥 •Y) •Y) •3•Y •Y) •2•Y •Y
[Evaluate ⟩

↓
=

[(0•(𝑥•Y)•Y)•3•Y•Y]•2•Y•Y =
↑

⟨ Associativity]

(0•[((𝑥•Y)•Y)•3•Y•Y])•2•Y•Y
[Associativity ⟩

↓
= (0•[((𝑥•Y)•Y)•3]•Y•Y)•2•Y•Y =

↑
[Commutativity ⟩

(0•[(3•(𝑥•Y)•Y)•Y•Y])•2•Y•Y
⟨ Associativity]

↓
= [0•3•((𝑥•Y)•Y)•Y•Y]•2•Y•Y =

↑
[Associativity ⟩

((0•3)•((𝑥•Y)•Y)•[Y•Y])•2•Y•Y
[Left neutrality ⟩

↓
=

((0•3) • [(𝑥 •Y) •Y] •Y) •2•Y •Y =
↑

⟨ Associativity]

((0•3) • (𝑥 • [Y •Y]) •Y) •2•Y •Y
[Left neutrality ⟩

↓
= ([0•3] • (𝑥 •Y) •Y) •2•Y •Y =

↑
[Evaluate ⟩

(3 • (𝑥 • Y) • Y) • 2 • Y • Y
⟨ Associativity]

↓
= 3 • [((𝑥 • Y) • Y) • 2 • Y • Y] =

↑
[Associativity ⟩

3 • [((𝑥 • Y) • Y) • 2] • Y • Y
[Commutativity ⟩

↓
=

3 • [(2 • (𝑥 • Y) • Y) • Y • Y] =
↑

⟨ Associativity]

3 • 2 • ((𝑥 • Y) • Y) • Y • Y
[Associativity ⟩

↓
= (3 • 2) • ((𝑥 • Y) • Y) • [Y • Y] =

↑
[Left neutrality ⟩

(3•2) • [(𝑥 •Y) •Y] •Y
⟨ Associativity]

↓
= (3•2) • (𝑥 • [Y•Y]) •Y =

↑
[Left neutrality ⟩

[3•2] • (𝑥 •Y) •Y
[Evaluate ⟩

↓
= 5• [(𝑥 •Y) •Y] =

↑
[Right neutrality ⟩

5• [𝑥 •Y]
[Right neutrality ⟩

↓
= 5•𝑥

Fig. 16. Frex-extracted proof of (𝑥 • 3) • 2 = 5 • 𝑥 in the additive monoid over Nat

brackets mean appealing to congruence, where the context is the congruence’s context, and the

term in the hole is the equation’s LHS. Fig. 17 shows an automatically extracted certificate for the

equation 0 + (𝑥 + 0) + 0 = 𝑥 in a generic monoid m = (U m, O1, (.+.)). The certificate is generated
inside a module that parameterises over the generic monoid m and introduces the various notations

and reasoning functions.

B MODULARITY: INVOLUTIVE ALGEBRAS

We recount Jacobs’s account, albeit in a more advanced categorical jargon, and use it to prove

a generic representation theorem for involutive frals and frexes. We don’t use this development

elsewhere in this manuscript.

Jacobs appeals to the Baez-Dolan microcosm principle [5] — an algebraic structure on an object

28

Frex: dependently-typed algebraic simplification Draft, 2023

units : (x : U m) -> O1 .+. (x .+. O1) .+. O1 =~= x

units x = CalcWith (cast m) $

|~ O1 .+. (x .+. O1) .+. O1

~~ O1 .+. (O1 .+. x .+. O1) .+. O1

..<(Cong (\ focus => O2 :+: (focus :+: O2) :+: O2) $ lftNeutrality x)

~~ O1 .+. (O1 .+. (x .+. O1)) .+. O1

..<(Cong (\ focus => O2 :+: focus :+: O2) $ associativity O1 x O1)

~~ O1 .+. O1 .+. (x .+. O1) .+. O1

...(Cong (\ focus => focus :+: O2) $ associativity O1 O1 (x .+. O1))

~~ O1 .+. O1 .+. x .+. O1 .+. O1

...(Cong (\ focus => focus :+: O2) $ associativity (O1 .+. O1) x O1)

~~ O1 .+. x .+. O1 .+. O1

...(Cong (\ focus => focus :+: Val x :+: O2 :+: O2) $ lftNeutrality O1)

~~ O1 .+. x .+. (O1 .+. O1)

..<(associativity (O1 .+. x) O1 O1)

~~ O1 .+. x .+. O1

...(Cong (\ focus => O2 :+: Val x :+: focus) $ lftNeutrality O1)

~~ O1 .+. x

...(rgtNeutrality (O1 .+. x))

~~ x

...(lftNeutrality x)

Fig. 17. Frex-certificate for the of 0 + (𝑥 + 0) + 0 = 𝑥 in a generic monoid m

XX

a
𝑋

a𝑋

=

comes from a similar structure on its category — and defines the following

concepts. An involutive structure on a category C is a pair ((−), a) consisting
of a functor (−) : C → C, called the involution, and a natural isomorphism

a : (−) → −, called the involution law, satisfying the condition on the right. This definition is

equivalent to Jacbos’s, but reverses the direction of the involution law.

For example, each category has an involutive structure given by the identity functor as involution

and the identity natural transformation as the involutive law. This structure, which we call the

trivial involutive structure, may seem degenerate, but it plays an important role in our development.

The motivating example is Monoid, the category of monoids. It has the following non-trivial

involutive structure. Given a monoid a, construct another monoid a with the operation reversed:

a ⎜·⨆︁ (𝑥,𝑦) := a ⎜·⨆︁ (𝑦, 𝑥). If h : a → b is a monoid homomorphism, then the same underlying

function provides a monoid homomorphism h : a → b. These maps define an involution functor

(−) : Monoid → Monoid. The identity function is then a monoid isomorphism a := (λ𝑥 .𝑥) : a → a,

the required involution law. We have similar involutive structures on other categories, given by

ordinary or commutative: semi-groups, monoids, groups, semirings and rings, and so on.

aa

a

h

h

a :=

λ𝑥 .𝑥

=

To see the microcosm principle in action, note that a function h : U a → U a makes

a monoid a into an involutive monoid if and only if (1) it is a monoid homomorphism

h : a → a, so h(x · y) = h y · h x, and (2) the diagram on the right commutes, so h(h x) = x.

These two conditions categorify the notion of an involutive monoid, so we can define

it in any involutive category, not just Monoid. Jacobs calls these self-conjugate objects, and we will

study them in more detail soon.

29

Draft, 2023 G. Allais, E. Brady, N. Corbyn, O. Kammar, and J. Yallop

𝐹 X 𝐹 X 𝐹 X

𝐹𝑋 𝐹𝑋

𝐹a a𝐹

b
X bX=

Packaging this structure, an involutive category C = (Co, (−), a) is an
ordinary category Co equipped with an involutive structure ((−), a). An
involutive functor 𝐹 : B → C between involutive categories is a pair (𝐹o, b𝐹)
consisting of an ordinary functor 𝐹o : Bo → Co and a natural transformation b𝐹 : 𝐹o (−) → 𝐹o (−)
called its distributive law, satisfying the compatibility condition on the right. Such distributive laws

are natural isomorphisms.

The canonical example is the forgetful functor U : ModelT → Set from the category of models of

some presentation T to the category of sets and functions. This functor has an involutive functor

structure w.r.t. an involutive structure on ModelT , when the involution of an algebra only changes

the operations of the algebra, but not its carrier. Note the role that the trivial involutive structure

on Set plays. All the examples above of monoid varieties and the semi-ring varieties w.r.t. the

operation-reversal and trivial involutive structures have such involutive forgetful functors.

𝐹X 𝐺X

𝐺X𝐹X

𝛼X

𝛼X

b𝐹 b𝐺=

An involutive natural transformation 𝛼 : 𝐹 → 𝐺 between two involutive

functors is an ordinary natural transformation 𝛼 : 𝐹o → 𝐺o between their

underlying ordinary functors that moreover satisfies the condition on the right.

As Jacobs comments, we therefore have a 2-category ICat consisting of involutive
categories, functors, and natural transformations, and we may derive involutive adjunctions as two

involutive functors and two involutive natural transformations satisfying the triangle laws.

We can turn an ordinary adjunction into an involutive one when one of the functors is involutive:

Proposition B.1. Let 𝐺 : A → C be an involutive functor, and 𝐹o ⊣ 𝐺o be a left-adjoint to
the ordinary functor underlying 𝐺 with unit [and counit Y. Set b𝐹X : 𝐹oX → 𝐹oX to be the mate of

the composite X
[
−→ 𝐺o𝐹oX

(b𝐺)−1
−−−−−→ 𝐺o𝐹oX. Then (1) b𝐹 equips 𝐹o with an involutive functor structure

𝐹 : C → A; and (2) 𝐹 ⊣ 𝐺 is an involutive adjunction with unit [and counit Y.

As a consequence, the free model functors for models in which the forgetful functor is involutive

are all involutive adjunctions. This consequence covers our monoid and semi-ring varieties of

interest, namely ordinary and commutative semi-groups, monoids, groups, semi-rings and rings

with or without a unit. The distributive laws in these examples are given by the mate of the function:

λ𝑥 .[𝑥 : X = X
[=[
−−−→ 𝑈𝐹 X

b𝑈 =λ𝑡 .𝑡
−−−−−−→ 𝑈𝐹X. One might be tempted to think that the resulting distributive

law is the identity homomorphism, because the mate of the unit of an adjunction is the identity

function. It is not the case. When we take the mate, we take into account the algebra structure of

𝐹 X, which may change the interpretation of the operations, and consequently changes the resulting

mate homomorphism. For the non-trivial involutive structures over monoid and semi-ring varieties,

the distributive law will reverse the relevant binary operation.

aa

a

𝑗
𝑗

a
=

A self-conjugate object a in an involutive category A is a pair (aobj, 𝑗a) consist-
ing of an object aobj in A, and an A-morphism 𝑗𝐴 : aobj → aobj, satisfying the

triangle on the right. As we saw on p. 29, self-conjugate monoids are involutive

monoids, and more generally, self-conjugate semi-groups, groups, semi-rings, rings,

etc. are the involutive ones. A homomorphism h : a → b of self-conjugate objects is a homomorphism

a b

ba

h

h

𝑗 𝑗=

h : aobj → bobj between their underlying objects that moreover satisfies the condition

on the left. This condition generalises the usual condition of involutive monoid

homomorphisms and so on. Since homomorphisms of self-conjugate objects compose

and contain the identities, they form a category which we denote by SCA. Jacobs

shows that the forgetful functor U : SC Set → Set has a left adjoint FSC : Set → SC Set sending
each set X to the coproduct of two copies of itself, i.e., by tagging each element with a boolean, and

the self-conjugation structure flips this boolean FSCX := ((Bool,X), λ(b, x).(¬b, x)).

30

Frex: dependently-typed algebraic simplification Draft, 2023

It will pay-off immediately to include one more level of abstraction. Jacobs (Lemma 6) shows that

the SC -construction extends to a 2-functor SC : ICat → ICat. We recall the remaining structure.

The action on objects of ICat equips the category SCA with an involutive structure, sending each

self-conjugate object a to the self-conjugate object a := (aobj, 𝑗a : aobj → aobj). The action on the

SCA

SCC

A

C

U

U

𝐹SC 𝐹 =

morphisms of ICat, sends an involutive functor 𝐹 : B → C to the involutive

functor SC 𝐹 : SCB → SCC mapping each self-conjugate object a to the self-

conjugate object (𝐹oaobj, 𝑗SC 𝐹a : 𝐹oaobj
(b𝐹)−1
−−−−−→ 𝐹oaobj

𝐹o 𝑗a−−−−→), and acting as 𝐹o
on self-conjugate homomorphisms. The action on 2-cells sends each involutive

natural transformations to itself, i.e., a natural transformation between involutive functors also

preserves the resulting self-conjugated structure. The forgetful functor U : SCA → A is then

natural as on the left.

SCA

SCC A

C

U

UF
C
SC

𝐺

SC𝐺SC 𝐹

nat.

=

⊣

⊣
We profit off of this obscene level of abstraction immediately: 2-functors

preserve all 2-adjunctions, since they transport the triangle equalities to

the appropriate triangle equalities. Therefore, if we have an involutive

adjunction 𝐹 ⊣ 𝐺 : A → C where C has a free self-conjugate object

adjunction FCSC ⊣ U : SCC → C, we get the free self-conjugate A-object on

X as the composite 𝐹 (FCSCX) completely structurally, as on the right. Applying

this result to frals, we get the following generalisation of Prop. 5.1(fral):

Proposition B.2. Let T be a presentation equipped with an involutive structure over ModelT and
an involutive forgetful functor structure. Let (A, Env) be any free T model over the product (Bool,X).
Then the following structure exhibits A as the free self-conjugate T -model over X:

𝑗A : A
b−1

−−→ A
≫=(¬×id)
−−−−−−−−→ A

Env′ : X
λx.(False,x)
−−−−−−−−−−−→ (Bool,X) (≫=′ f) : A

≫=λ(b,x) .

𝑏 = True : 𝑗a (f x)
𝑏 = False : f x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ a

Having dealt with the fral, we turn to the frex. Jacobs proves that if (a1+a2,]1,]2) is a coproduct of a1
and a2 in an involutive category, then (a1 + a2,]1,]2) is a coproduct of a1 and a2. The unique cotupling

morphism in the universal property, for each h𝑖 : a𝑖 → b, is [h1, h2] : a1 + a2
[h1◦a−1,h2◦a−1]−−−−−−−−−−−−→ b

a−→ b. If

each a𝑖 has a self-conjugate structure 𝑗𝑖 : a𝑖 → a𝑖 , then the coproduct a1 + a2 has a self-conjugate

structure given by 𝑗1 + 𝑗2 := []1 ◦ 𝑗1,]2 ◦ 𝑗2] : a1 + a2 → a1 + a2. Since the frex a[X] can be construct

as the coproduct of the model a with the fral on X, we generalise Prop. 5.1(frex):

Proposition B.3. Let T be a presentation equipped with an involutive structure over ModelT
and an involutive forgetful functor structure, and a be a self-conjugate T -model. Let (A, Var, Embed) be
any T -frex of aobj by the product (Bool,X). Then the following structure exhibits A as the frex of the
self-conjugate T -model a by X, for h : a → c involutive monoid homomorphism and function e : X → c:

𝑗 : A

[
aobj

a−1−−→ aobj
𝑗a−−→ a

Embed−−−−−→ A, (Bool,X)
¬×id−−−−→ (Bool,X)

Var−−−→ U A
b−1

−−→ U A

]
−−→ A

a−→ A

Var
′
: X

λx.(False,x)
−−−−−−−−−−−→ (Bool,X)

Var−−−→ A Embed : aobj
Embed−−−−−→ A

[h, e] : A

ℎ, λ(b,𝑥).
{
b = True : 𝑗c (e x)
b = False : (e x)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ c

Frex does not yet implement this proposition in its full generality, since it would require a

substantial amount of additional infrastructure, either inside Frex or as part of a category-theory

31

Draft, 2023 G. Allais, E. Brady, N. Corbyn, O. Kammar, and J. Yallop

library for Idris2. For example, the type of the construction requires a categorical equivalence

between some ModelT ′
for the presentation T ′

of involutive T -models and the self-conjugate

T -models. Frex currently only implements the special case of Prop. 5.1, with its specialised proof.

32

	Abstract
	1 Introduction
	2 Overview
	3 Setoids and equational reasoning: an Idris2 tutorial
	4 Universal algebra in Frex
	5 Free extensions and algebras
	5.1 Universal properties
	5.2 Powers
	5.3 Frex via coproducts with fral
	5.4 Fral via an initial algebra frex
	5.5 Reusing frexlets

	6 Completeness and Certification
	6.1 Extracting certificates
	6.2 Proof simplication

	7 Reflection
	8 Evaluation
	8.1 Using Frex
	8.2 Extending Frex

	9 System design lessons
	9.1 Idris2
	9.2 Agda

	10 Related work
	11 Conclusions and further work
	Acknowledgments
	References
	A Proof printing and certification
	B Modularity: involutive algebras

